Abdullah Alharith, Sulaiman Albassam, Thamer Al-Zahrani
{"title":"A Novel Approach for Near Wellbore Stimulation and Deposits Removal Utilizing Thermochemical Reaction","authors":"Abdullah Alharith, Sulaiman Albassam, Thamer Al-Zahrani","doi":"10.2118/204771-ms","DOIUrl":null,"url":null,"abstract":"\n Organic and inorganic deposits play a major issue and concern in the wellbore of oil wells. This paper discusses the utilization of a new and novel approach utilizing a thermochemical recipe that shows a successful impact on both organic and inorganic deposits, as an elimination agent, and functions as stimulation fluid to improve the permeability of the near wellbore formation.\n The new recipe consists of mixing nitrite salt with sulfamic acid in the wellbore at the target zone. The product of this reaction includes heat, acidic salt, and nitrogen gas. The heat of the reaction is enough to liquefy the organic deposits, and the acidic salt will tackle the carbonate scale in the tube and will increase the permeability of the near wellbore area. The nitrogen gas is an inert gas; it will not affect the reaction and will help to flow back the well after the treatment.\n The experimental work shows an increment in the temperature by 65 °C when mixing the two chemicals. The test was conducted at room conditions and the temperature reached around 90 °C. Adding another 65 °C to the wellbore temperature is enough to melt asphaltene and wax, the acidic salt tackles carbonate scale. As a result, the mixture works on eliminating both the organic and inorganic deposits. The permeability of the limestone sample shows an increment of 65% when treated by the mixture of the reaction recipe.\n The uniqueness of the new thermochemical recipe is the potential of performing three objectives at the same time; the heat of the reaction removes the organic deposits in the wellbore, the acidic salt tackles carbonate scale, and improves the permeability of the near wellbore zone.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Wed, December 01, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204771-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Organic and inorganic deposits play a major issue and concern in the wellbore of oil wells. This paper discusses the utilization of a new and novel approach utilizing a thermochemical recipe that shows a successful impact on both organic and inorganic deposits, as an elimination agent, and functions as stimulation fluid to improve the permeability of the near wellbore formation.
The new recipe consists of mixing nitrite salt with sulfamic acid in the wellbore at the target zone. The product of this reaction includes heat, acidic salt, and nitrogen gas. The heat of the reaction is enough to liquefy the organic deposits, and the acidic salt will tackle the carbonate scale in the tube and will increase the permeability of the near wellbore area. The nitrogen gas is an inert gas; it will not affect the reaction and will help to flow back the well after the treatment.
The experimental work shows an increment in the temperature by 65 °C when mixing the two chemicals. The test was conducted at room conditions and the temperature reached around 90 °C. Adding another 65 °C to the wellbore temperature is enough to melt asphaltene and wax, the acidic salt tackles carbonate scale. As a result, the mixture works on eliminating both the organic and inorganic deposits. The permeability of the limestone sample shows an increment of 65% when treated by the mixture of the reaction recipe.
The uniqueness of the new thermochemical recipe is the potential of performing three objectives at the same time; the heat of the reaction removes the organic deposits in the wellbore, the acidic salt tackles carbonate scale, and improves the permeability of the near wellbore zone.