Asymptotic properties of nonparametric quantile estimation with spatial dependency

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Serge-Hippolyte Arnaud Kanga, O. Hili, S. Dabo‐Niang, Assi N'Guessan
{"title":"Asymptotic properties of nonparametric quantile estimation with spatial dependency","authors":"Serge-Hippolyte Arnaud Kanga, O. Hili, S. Dabo‐Niang, Assi N'Guessan","doi":"10.1111/stan.12284","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to nonparametrically estimate the conditional quantile for a locally stationary multivariate spatial process. The new kernel quantile estimate derived from the one of conditional distribution function (CDF). The originality in the paper is based on the ability to take into account some local spatial dependency in estimate CDF form. Consistency and asymptotic normality of the estimates are obtained under α$$ \\alpha $$ ‐mixing condition. Numerical study and application to real data are given in order to illustrate the performance of our methodology.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"1 1","pages":"254 - 283"},"PeriodicalIF":1.4000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12284","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this work is to nonparametrically estimate the conditional quantile for a locally stationary multivariate spatial process. The new kernel quantile estimate derived from the one of conditional distribution function (CDF). The originality in the paper is based on the ability to take into account some local spatial dependency in estimate CDF form. Consistency and asymptotic normality of the estimates are obtained under α$$ \alpha $$ ‐mixing condition. Numerical study and application to real data are given in order to illustrate the performance of our methodology.
具有空间相关性的非参数分位数估计的渐近性质
本文的目的是对局部平稳多元空间过程的条件分位数进行非参数估计。从条件分布函数(CDF)的核分位数估计出发,提出了新的核分位数估计。本文的独创性是基于在估计CDF形式中考虑一些局部空间依赖性的能力。在α $$ \alpha $$‐混合条件下,得到了估计的一致性和渐近正态性。通过数值研究和对实际数据的应用,说明了本文方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信