Recognition of Cyanobacteria Bloom Based on Spectral Analysis of Remote Sensing Imagery

Yi Lin, C. Pan, Yingying Chen, Ren Wenwei
{"title":"Recognition of Cyanobacteria Bloom Based on Spectral Analysis of Remote Sensing Imagery","authors":"Yi Lin, C. Pan, Yingying Chen, Ren Wenwei","doi":"10.3969/J.ISSN.0253-374X.2011.08.028","DOIUrl":null,"url":null,"abstract":"Based on the analysis of spectral curve and features of cyanobacteria bloom and other typical ground object,the normalized difference cyanobacteria bloom index(NDI_CB)was constructed to distinguish between cyanobacteria bloom and turbid water with the Landsat-7 ETM+ image in Lake Dianshan.In this study two other different vegetation indexes,normalized difference vegetation index(NDVI)and ratio vegetation index(RVI),together with NDI_CB,were applied to extracting the cyanobacteria bloom information from the same image via unsupervised classification method(k-means).The results show that NDI_CB is the best one for low-density cyanobacteria bloom extraction.In order to recognize the cyanobacteria bloom better,support vector machine(SVM)classification method was used to classify the image based on spectral features and NDI_CB,and to obtain the spatial distribution and the area of cyanobacteria bloom in Lake Dianshan.Through studying the laws of the cyanobacteria bloom distribution at a particular time,a sound,efficient and objective basis has been achieved for the ecological analysis of the prevention and the treatment of cyanobacteria bloom.","PeriodicalId":17444,"journal":{"name":"Journal of Tongji University","volume":"41 1","pages":"1247-1252"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tongji University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3969/J.ISSN.0253-374X.2011.08.028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Based on the analysis of spectral curve and features of cyanobacteria bloom and other typical ground object,the normalized difference cyanobacteria bloom index(NDI_CB)was constructed to distinguish between cyanobacteria bloom and turbid water with the Landsat-7 ETM+ image in Lake Dianshan.In this study two other different vegetation indexes,normalized difference vegetation index(NDVI)and ratio vegetation index(RVI),together with NDI_CB,were applied to extracting the cyanobacteria bloom information from the same image via unsupervised classification method(k-means).The results show that NDI_CB is the best one for low-density cyanobacteria bloom extraction.In order to recognize the cyanobacteria bloom better,support vector machine(SVM)classification method was used to classify the image based on spectral features and NDI_CB,and to obtain the spatial distribution and the area of cyanobacteria bloom in Lake Dianshan.Through studying the laws of the cyanobacteria bloom distribution at a particular time,a sound,efficient and objective basis has been achieved for the ecological analysis of the prevention and the treatment of cyanobacteria bloom.
基于遥感影像光谱分析的蓝藻水华识别
在分析蓝藻华与其他典型地物光谱曲线及特征的基础上,利用Landsat-7 ETM+遥感影像构建归一化差异蓝藻华指数(NDI_CB),用于区分淀山湖蓝藻华与浑浊水体。本研究采用归一化植被指数(NDVI)和比值植被指数(RVI),结合NDI_CB,采用无监督分类方法(k-means)从同一幅图像中提取蓝藻华信息。结果表明,NDI_CB是低密度蓝藻华提取的最佳工艺。为了更好地识别蓝藻水华,采用支持向量机(SVM)分类方法,基于光谱特征和NDI_CB对图像进行分类,得到滇山湖蓝藻水华的空间分布和面积。通过对特定时间蓝藻华分布规律的研究,为蓝藻华防治的生态分析提供了合理、高效、客观的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信