A new method for determination of the theoretical reduction amount for wide-thick slab during the mechanical reduction process

IF 0.9 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING
C. Wu, J. Zeng, G.-R. Wu, X. Xie, M. Zhang
{"title":"A new method for determination of the theoretical reduction amount for wide-thick slab during the mechanical reduction process","authors":"C. Wu, J. Zeng, G.-R. Wu, X. Xie, M. Zhang","doi":"10.2298/JMMB200622010W","DOIUrl":null,"url":null,"abstract":"Mechanical soft reduction (MSR) is an effective method for elimination of the centerline segregation and porosity of the continuous casting steel slab, and the reduction amount is a key parameter that determines whether the MSR could be applied successfully. In the present work, a 2D heat transfer model was developed for predicting the non-uniform solidification of the wide-thick slab. The measured shell thickness by nail shooting experiment and the measured slab surface temperature by infrared camera were applied to validate the 2D heat transfer model. A new calculation method of theoretical reduction amount that could consider the influence of non-uniform solidification of the wide-thick slab was then derived. Based on the predicted temperature field by the 2D heat transfer model and the newly-proposed calculation method, the required theoretical reduction amount and reduction gradient/rate for the wide-thick slab were calculated and discussed. The difference between the newly-proposed method and the previous method, the influence of the casting speed and slab thickness on the required theoretical reduction amount and reduction gradient/rate were also investigated.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"17 1","pages":"125-136"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/JMMB200622010W","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical soft reduction (MSR) is an effective method for elimination of the centerline segregation and porosity of the continuous casting steel slab, and the reduction amount is a key parameter that determines whether the MSR could be applied successfully. In the present work, a 2D heat transfer model was developed for predicting the non-uniform solidification of the wide-thick slab. The measured shell thickness by nail shooting experiment and the measured slab surface temperature by infrared camera were applied to validate the 2D heat transfer model. A new calculation method of theoretical reduction amount that could consider the influence of non-uniform solidification of the wide-thick slab was then derived. Based on the predicted temperature field by the 2D heat transfer model and the newly-proposed calculation method, the required theoretical reduction amount and reduction gradient/rate for the wide-thick slab were calculated and discussed. The difference between the newly-proposed method and the previous method, the influence of the casting speed and slab thickness on the required theoretical reduction amount and reduction gradient/rate were also investigated.
提出了一种确定宽厚板坯机械变形过程中理论变形量的新方法
机械软还原(MSR)是消除连铸钢板坯中心线偏析和气孔的有效方法,而柔还原量是决定该方法能否成功应用的关键参数。本文建立了宽厚板坯非均匀凝固的二维传热模型。利用射钉实验测得的壳体厚度和红外摄像机测得的板坯表面温度对二维传热模型进行了验证。推导了一种考虑宽厚板坯不均匀凝固影响的理论折减量计算方法。基于二维传热模型预测的温度场和新提出的计算方法,对宽厚板坯所需的理论还原量和还原梯度/速率进行了计算和讨论。研究了新方法与原方法的差异,以及浇注速度和板坯厚度对理论还原量和还原率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
40.00%
发文量
19
审稿时长
2 months
期刊介绍: University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded. Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信