Andrea Aquino, Pietro Braione, G. Denaro, P. Salza
{"title":"Facilitating program performance profiling via evolutionary symbolic execution","authors":"Andrea Aquino, Pietro Braione, G. Denaro, P. Salza","doi":"10.1002/stvr.1719","DOIUrl":null,"url":null,"abstract":"Performance profiling can benefit from test cases that hit high‐cost executions of programs. In this paper, we investigate the problem of automatically generating test cases that trigger the worst‐case execution of programs and propose a novel technique that solves this problem with an unprecedented combination of symbolic execution and evolutionary algorithms. Our technique, which we refer to as ‘Evolutionary Symbolic Execution’, embraces the execution cost of the program paths as the fitness function to pursue the worst execution. It defines an original set of evolutionary operators, based on symbolic execution, which suitably sample the possible program paths to make the search process effective. Specifically, our technique defines a memetic algorithm that (i) incrementally evolves by steering symbolic execution to traverse new program paths that comply with execution conditions combined and refined from the currently collected worse program paths and (ii) periodically applies local optimizations to the execution conditions of the worst currently identified program path to further speed up the identification of the worst path. We report on a set of initial experiments indicating that our technique succeeds in generating good worst‐case test cases for programs with which existing approaches cannot cope. Also, we show that, as far as the problem of generating worst‐case test cases is concerned, the distinguishing evolutionary operators based on symbolic execution that we define in this paper are more effective than traditional operators that directly manipulate the program inputs.","PeriodicalId":49506,"journal":{"name":"Software Testing Verification & Reliability","volume":"68 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Testing Verification & Reliability","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/stvr.1719","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Performance profiling can benefit from test cases that hit high‐cost executions of programs. In this paper, we investigate the problem of automatically generating test cases that trigger the worst‐case execution of programs and propose a novel technique that solves this problem with an unprecedented combination of symbolic execution and evolutionary algorithms. Our technique, which we refer to as ‘Evolutionary Symbolic Execution’, embraces the execution cost of the program paths as the fitness function to pursue the worst execution. It defines an original set of evolutionary operators, based on symbolic execution, which suitably sample the possible program paths to make the search process effective. Specifically, our technique defines a memetic algorithm that (i) incrementally evolves by steering symbolic execution to traverse new program paths that comply with execution conditions combined and refined from the currently collected worse program paths and (ii) periodically applies local optimizations to the execution conditions of the worst currently identified program path to further speed up the identification of the worst path. We report on a set of initial experiments indicating that our technique succeeds in generating good worst‐case test cases for programs with which existing approaches cannot cope. Also, we show that, as far as the problem of generating worst‐case test cases is concerned, the distinguishing evolutionary operators based on symbolic execution that we define in this paper are more effective than traditional operators that directly manipulate the program inputs.
期刊介绍:
The journal is the premier outlet for research results on the subjects of testing, verification and reliability. Readers will find useful research on issues pertaining to building better software and evaluating it.
The journal is unique in its emphasis on theoretical foundations and applications to real-world software development. The balance of theory, empirical work, and practical applications provide readers with better techniques for testing, verifying and improving the reliability of software.
The journal targets researchers, practitioners, educators and students that have a vested interest in results generated by high-quality testing, verification and reliability modeling and evaluation of software. Topics of special interest include, but are not limited to:
-New criteria for software testing and verification
-Application of existing software testing and verification techniques to new types of software, including web applications, web services, embedded software, aspect-oriented software, and software architectures
-Model based testing
-Formal verification techniques such as model-checking
-Comparison of testing and verification techniques
-Measurement of and metrics for testing, verification and reliability
-Industrial experience with cutting edge techniques
-Descriptions and evaluations of commercial and open-source software testing tools
-Reliability modeling, measurement and application
-Testing and verification of software security
-Automated test data generation
-Process issues and methods
-Non-functional testing