Overlapping Multi-Bandit Best Arm Identification

J. Scarlett, Ilija Bogunovic, V. Cevher
{"title":"Overlapping Multi-Bandit Best Arm Identification","authors":"J. Scarlett, Ilija Bogunovic, V. Cevher","doi":"10.1109/ISIT.2019.8849327","DOIUrl":null,"url":null,"abstract":"In the multi-armed bandit literature, the multibandit best-arm identification problem consists of determining each best arm in a number of disjoint groups of arms, with as few total arm pulls as possible. In this paper, we introduce a variant of the multi-bandit problem with overlapping groups, and present two algorithms for this problem based on successive elimination and lower/upper confidence bounds (LUCB). We bound the number of total arm pulls required for high-probability best-arm identification in every group, and we complement these bounds with a near-matching algorithm-independent lower bound.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"121 2 1","pages":"2544-2548"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In the multi-armed bandit literature, the multibandit best-arm identification problem consists of determining each best arm in a number of disjoint groups of arms, with as few total arm pulls as possible. In this paper, we introduce a variant of the multi-bandit problem with overlapping groups, and present two algorithms for this problem based on successive elimination and lower/upper confidence bounds (LUCB). We bound the number of total arm pulls required for high-probability best-arm identification in every group, and we complement these bounds with a near-matching algorithm-independent lower bound.
重叠多强盗最佳武器识别
在多臂强盗文献中,多臂强盗最佳臂识别问题包括在许多不相交的臂组中确定每个最佳臂,并且总臂拉力尽可能少。本文引入了一种具有重叠群的多盗匪问题的变体,并给出了两种基于逐次消去和上下置信区间(LUCB)的算法。我们限定了每组中高概率最佳手臂识别所需的总手臂拉拔次数,并用一个接近匹配的与算法无关的下界来补充这些边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信