Deep Reinforcement Learning-based ROS-Controlled RC Car for Autonomous Path Exploration in the Unknown Environment

Sabir Hossain, Oualid Doukhi, Yeon-ho Jo, D. Lee
{"title":"Deep Reinforcement Learning-based ROS-Controlled RC Car for Autonomous Path Exploration in the Unknown Environment","authors":"Sabir Hossain, Oualid Doukhi, Yeon-ho Jo, D. Lee","doi":"10.23919/ICCAS50221.2020.9268370","DOIUrl":null,"url":null,"abstract":"Nowadays, Deep reinforcement learning has become the front runner to solve problems in the field of robot navigation and avoidance. This paper presents a LiDAR-equipped RC car trained in the GAZEBO environment using the deep reinforcement learning method. This paper uses reshaped LiDAR data as the data input of the neural architecture of the training network. This paper also presents a unique way to convert the LiDAR data into a 2D grid map for the input of training neural architecture. It also presents the test result from the training network in different GAZEBO environment. It also shows the development of hardware and software systems of embedded RC car. The hardware system includes-Jetson AGX Xavier, teensyduino and Hokuyo LiDAR; the software system includes-ROS and Arduino C. Finally, this paper presents the test result in the real world using the model generated from training simulation.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"8 1","pages":"1231-1236"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Nowadays, Deep reinforcement learning has become the front runner to solve problems in the field of robot navigation and avoidance. This paper presents a LiDAR-equipped RC car trained in the GAZEBO environment using the deep reinforcement learning method. This paper uses reshaped LiDAR data as the data input of the neural architecture of the training network. This paper also presents a unique way to convert the LiDAR data into a 2D grid map for the input of training neural architecture. It also presents the test result from the training network in different GAZEBO environment. It also shows the development of hardware and software systems of embedded RC car. The hardware system includes-Jetson AGX Xavier, teensyduino and Hokuyo LiDAR; the software system includes-ROS and Arduino C. Finally, this paper presents the test result in the real world using the model generated from training simulation.
基于深度强化学习的ros控制RC车在未知环境下的自主路径探索
目前,深度强化学习已经成为解决机器人导航和回避问题的领跑者。本文介绍了一辆在GAZEBO环境下使用深度强化学习方法训练的激光雷达遥控车。本文使用重塑后的激光雷达数据作为训练网络神经结构的数据输入。本文还提出了一种将激光雷达数据转换成二维网格图的独特方法,用于训练神经结构的输入。给出了训练网络在不同GAZEBO环境下的测试结果。介绍了嵌入式遥控车硬件系统和软件系统的开发。硬件系统包括:jetson AGX Xavier、teensyduino和Hokuyo LiDAR;软件系统包括- ros和Arduino c。最后,本文利用训练仿真生成的模型给出了在现实世界中的测试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信