{"title":"Carboranyl oligonucleotides: 4. synthesis and physicochemical studies of oligonucleotides containing 2'-O-(o-carboran-1-yl)methyl group.","authors":"A. Olejniczak, M. Koziołkiewicz, Z. Leśnikowski","doi":"10.1089/108729002760070821","DOIUrl":null,"url":null,"abstract":"Boronated oligonucleotides are potential candidates for antisense oligonucleotide technology (AOT), boron neutron capture therapy (BNCT), and as tools in molecular biology. A method was developed for the solid phase synthesis of oligonucleotides containing 2'-O-(o-carboran-1-yl-methyl) (2'-CBM) group. Synthesis was performed using a standard beta-cyanoethyl cycle and automated DNA synthesizer. Manual steps were performed for the insertion of a modified monomer bearing the 2'-CBM group. Several tetradecanucleotides complementary to DNA-HCMV, and bearing 2'-CBM modification near the 3'-end or 5'-end or in the middle of the oligonucleotide chain were synthesized. The resulting oligomers were characterized by polyacrylamide gel electrophoresis (PAGE), reverse phase high-performance liquid chromatography (RP-HPLC), matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and ultraviolet spectroscopy (UV), circular dichroism (CD), and melting temperature (Tm) measurements. Tm of duplexes formed between 2'-CBM-modified tetradecanucleotides and complementary DNA and RNA template were compared with those formed by the unmodified oligonucleotide and complementary sequence. The stability of 2'-CBM oligonucleotides in the presence of phosphodiesterase I from Crotalus atrox venom and in human serum was studied. Oligonucleotides bearing the 2'-CBM group are characterized by increased resistance to enzymatic digestion, increased lipophilicity, and the ability to form stable duplexes with complementary templates.","PeriodicalId":7996,"journal":{"name":"Antisense & nucleic acid drug development","volume":"8 1","pages":"79-94"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antisense & nucleic acid drug development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/108729002760070821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
Boronated oligonucleotides are potential candidates for antisense oligonucleotide technology (AOT), boron neutron capture therapy (BNCT), and as tools in molecular biology. A method was developed for the solid phase synthesis of oligonucleotides containing 2'-O-(o-carboran-1-yl-methyl) (2'-CBM) group. Synthesis was performed using a standard beta-cyanoethyl cycle and automated DNA synthesizer. Manual steps were performed for the insertion of a modified monomer bearing the 2'-CBM group. Several tetradecanucleotides complementary to DNA-HCMV, and bearing 2'-CBM modification near the 3'-end or 5'-end or in the middle of the oligonucleotide chain were synthesized. The resulting oligomers were characterized by polyacrylamide gel electrophoresis (PAGE), reverse phase high-performance liquid chromatography (RP-HPLC), matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and ultraviolet spectroscopy (UV), circular dichroism (CD), and melting temperature (Tm) measurements. Tm of duplexes formed between 2'-CBM-modified tetradecanucleotides and complementary DNA and RNA template were compared with those formed by the unmodified oligonucleotide and complementary sequence. The stability of 2'-CBM oligonucleotides in the presence of phosphodiesterase I from Crotalus atrox venom and in human serum was studied. Oligonucleotides bearing the 2'-CBM group are characterized by increased resistance to enzymatic digestion, increased lipophilicity, and the ability to form stable duplexes with complementary templates.