BSDEs with Logarithmic Growth Driven by Brownian Motion and Poisson Random Measure and Connection to Stochastic Control Problem

Q3 Mathematics
Khalid Oufdil
{"title":"BSDEs with Logarithmic Growth Driven by Brownian Motion and Poisson Random Measure and Connection to Stochastic Control Problem","authors":"Khalid Oufdil","doi":"10.1515/eqc-2021-0012","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study one-dimensional backward stochastic differential equations under logarithmic growth in the 𝑧-variable (|z|⁢|ln⁡|z||)(\\lvert z\\rvert\\sqrt{\\lvert\\ln\\lvert z\\rvert\\rvert}). We show the existence and the uniqueness of the solution when the noise is driven by a Brownian motion and an independent Poisson random measure. In addition, we highlight the connection of such BSDEs with stochastic optimal control problem, where we show the existence of an optimal strategy for the control problem.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"1 1","pages":"27 - 42"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2021-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we study one-dimensional backward stochastic differential equations under logarithmic growth in the 𝑧-variable (|z|⁢|ln⁡|z||)(\lvert z\rvert\sqrt{\lvert\ln\lvert z\rvert\rvert}). We show the existence and the uniqueness of the solution when the noise is driven by a Brownian motion and an independent Poisson random measure. In addition, we highlight the connection of such BSDEs with stochastic optimal control problem, where we show the existence of an optimal strategy for the control problem.
布朗运动和泊松随机测度驱动的对数增长的BSDEs及其与随机控制问题的联系
摘要本文研究了𝑧-variable (|z| zi |ln²|z|)(\lvert z \rvert\sqrt{\lvert\ln\lvert z\rvert\rvert})中对数增长下的一维倒向随机微分方程。我们证明了当噪声由布朗运动和独立泊松随机测量驱动时解的存在性和唯一性。此外,我们强调了这种BSDEs与随机最优控制问题的联系,在那里我们证明了控制问题的最优策略的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastics and Quality Control
Stochastics and Quality Control Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信