A. Azizi, H. Camblong, A. Chakraborty, C. Ordóñez, M. Scully
{"title":"Quantum optics meets black hole thermodynamics via conformal quantum mechanics: I. Master equation for acceleration radiation","authors":"A. Azizi, H. Camblong, A. Chakraborty, C. Ordóñez, M. Scully","doi":"10.1103/PhysRevD.104.084086","DOIUrl":null,"url":null,"abstract":"A quantum-optics approach is used to study the nature of the acceleration radiation due to a random atomic cloud falling freely into a generalized Schwarzschild black hole through a Boulware vacuum. The properties of this horizon brightened acceleration radiation (HBAR) are analyzed with a master equation that is fully developed in a multimode format. A scheme for the coarse-graining average for an atomic cloud is considered, with emphasis on the random injection scenario, which is shown to generate a thermal state. The role played by conformal quantum mechanics (CQM) is shown to be critical for detailed balance via a Boltzmann factor governed by the near-horizon physics, with the unique selection of the Hawking temperature. The HBAR thermal state is the basis for a thermodynamic framework that parallels black hole thermodynamics.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevD.104.084086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A quantum-optics approach is used to study the nature of the acceleration radiation due to a random atomic cloud falling freely into a generalized Schwarzschild black hole through a Boulware vacuum. The properties of this horizon brightened acceleration radiation (HBAR) are analyzed with a master equation that is fully developed in a multimode format. A scheme for the coarse-graining average for an atomic cloud is considered, with emphasis on the random injection scenario, which is shown to generate a thermal state. The role played by conformal quantum mechanics (CQM) is shown to be critical for detailed balance via a Boltzmann factor governed by the near-horizon physics, with the unique selection of the Hawking temperature. The HBAR thermal state is the basis for a thermodynamic framework that parallels black hole thermodynamics.