Admissibility Estimation of Pareto Distribution Under Entropy Loss Function Based on Progressive Type-II Censored Sample

IF 0.2 Q4 MATHEMATICS
Guobing Fan
{"title":"Admissibility Estimation of Pareto Distribution Under Entropy Loss Function Based on Progressive Type-II Censored Sample","authors":"Guobing Fan","doi":"10.11648/J.PAMJ.20160506.13","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to study the estimation of Pareto distribution on the basis of progressive type-II censored sample. First, the maximum likelihood estimator (MLE) is derived. Then the Bayes estimator of the unknown parameter of Pareto distribution is derived on the basis of Gamma prior distribution under entropy loss function. Further the empirical Bayes estimator also obtained by using maximum likelihood on the basis of Bayes estimator. Finally, the admissibility of a class of inverse linear estimators are discussed under suitable conditions.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":"52 1","pages":"186"},"PeriodicalIF":0.2000,"publicationDate":"2016-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.PAMJ.20160506.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this paper is to study the estimation of Pareto distribution on the basis of progressive type-II censored sample. First, the maximum likelihood estimator (MLE) is derived. Then the Bayes estimator of the unknown parameter of Pareto distribution is derived on the basis of Gamma prior distribution under entropy loss function. Further the empirical Bayes estimator also obtained by using maximum likelihood on the basis of Bayes estimator. Finally, the admissibility of a class of inverse linear estimators are discussed under suitable conditions.
基于渐进式ii型截尾样本的熵损失函数下Pareto分布可容许性估计
本文的目的是研究基于渐进式ii型截尾样本的Pareto分布估计。首先,导出了极大似然估计量。然后在熵损失函数下,基于Gamma先验分布,导出了Pareto分布未知参数的Bayes估计量。进一步在贝叶斯估计量的基础上,利用极大似然方法得到了经验贝叶斯估计量。最后,在适当的条件下,讨论了一类逆线性估计的可容许性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信