Amélioration de l’autonomie énergétique et de l’impact environnemental d’une unité de trituration de tournesol par l’implantation conjointe d’un atelier de décorticage et d’une chaudière à coques

Sylvain Tostain, Pierre Chervier, Alain Laulan, Thomas Kermorgant
{"title":"Amélioration de l’autonomie énergétique et de l’impact environnemental d’une unité de trituration de tournesol par l’implantation conjointe d’un atelier de décorticage et d’une chaudière à coques","authors":"Sylvain Tostain, Pierre Chervier, Alain Laulan, Thomas Kermorgant","doi":"10.1051/OCL.2012.0485","DOIUrl":null,"url":null,"abstract":"Fibre rich sunflower hulls have always been regarded as having a remarkable calorific value (5 000 kWh/t DM), very close to that of wood. Rising energy costs, emergent environmental concerns, and fitness for use of sunflower derived products have led to a growing interest in the dehulling of sunflower seeds prior to crushing, and burning of hulls in biomass boilers to yield process steam on site. This was made possible by prominent technological improvements in boiler technology. The torsional chamber technology exhibits good performances in full combustion of sunflower hulls, allowing for a high efficiency, a great flexibility, and a limited emission of pollutants. Yet, fumes may still have to be post-treated to ensure compliance with stringent restrictions in dust emissions. Being a robust and versatile technology, the torsional chamber is able to cope with a feedstock quality varying to a certain extent. The general design of a crushing plant fitted with a dehulling unit is impacted dramatically and becomes very sensitive to variations in hullability of the incoming seeds. Hull content and size of the seeds are correlated positively to hullability; moisture, density and oil content being correlated negatively. Hullability is affected mostly by environmental effects, cultivars being responsible for it to a lesser extent. Thus, hullability is impacted by upstream practices in plant breeding, field, and grain elevator management. Success in an efficient hulling strategy not only depends on the use of relevant technologies on processing plants, but also relies on knowledge of the seed and meal customer needs, as well as on concerted actions at various levels along the sunflower chain.","PeriodicalId":19493,"journal":{"name":"Oléagineux, Corps gras, Lipides","volume":"6 1","pages":"332-340"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oléagineux, Corps gras, Lipides","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/OCL.2012.0485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Fibre rich sunflower hulls have always been regarded as having a remarkable calorific value (5 000 kWh/t DM), very close to that of wood. Rising energy costs, emergent environmental concerns, and fitness for use of sunflower derived products have led to a growing interest in the dehulling of sunflower seeds prior to crushing, and burning of hulls in biomass boilers to yield process steam on site. This was made possible by prominent technological improvements in boiler technology. The torsional chamber technology exhibits good performances in full combustion of sunflower hulls, allowing for a high efficiency, a great flexibility, and a limited emission of pollutants. Yet, fumes may still have to be post-treated to ensure compliance with stringent restrictions in dust emissions. Being a robust and versatile technology, the torsional chamber is able to cope with a feedstock quality varying to a certain extent. The general design of a crushing plant fitted with a dehulling unit is impacted dramatically and becomes very sensitive to variations in hullability of the incoming seeds. Hull content and size of the seeds are correlated positively to hullability; moisture, density and oil content being correlated negatively. Hullability is affected mostly by environmental effects, cultivars being responsible for it to a lesser extent. Thus, hullability is impacted by upstream practices in plant breeding, field, and grain elevator management. Success in an efficient hulling strategy not only depends on the use of relevant technologies on processing plants, but also relies on knowledge of the seed and meal customer needs, as well as on concerted actions at various levels along the sunflower chain.
通过联合安装脱壳车间和壳锅炉,提高向日葵粉碎装置的能源自主和环境影响
富含纤维的葵花籽壳一直被认为具有显著的热值(5 000千瓦时/吨日干),非常接近木材。不断上升的能源成本,紧急出现的环境问题,以及使用向日葵衍生产品的适应性,导致人们对粉碎前的葵花籽脱壳,以及在生物质锅炉中燃烧壳以产生现场工艺蒸汽的兴趣越来越大。这是由于锅炉技术的显著技术改进而成为可能的。扭转室技术在葵花籽壳的充分燃烧中表现出良好的性能,具有效率高、灵活性强、污染物排放少的特点。然而,废气可能仍然需要进行后处理,以确保符合严格的粉尘排放限制。作为一种强大的和通用的技术,扭转室能够应付原料质量在一定程度上的变化。装有脱壳装置的破碎装置的总体设计受到巨大的影响,并且对进入的种子的壳性变化非常敏感。种子的壳含量和大小与壳性呈正相关;水分、密度和含油量呈负相关。稻壳性主要受环境影响,品种对稻壳性的影响较小。因此,植物育种、田间和粮食升降机管理的上游实践影响着稻壳性。有效剥壳策略的成功不仅取决于加工厂相关技术的使用,还取决于对种子和豆粕客户需求的了解,以及向日葵链上各个层面的协调行动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信