Involutions in Weyl groups and nil-Hecke algebras

IF 0.1 Q4 MATHEMATICS
G. Lusztig, D. Vogan, Jr.
{"title":"Involutions in Weyl groups and nil-Hecke algebras","authors":"G. Lusztig, D. Vogan, Jr.","doi":"10.21915/bimas.2022401","DOIUrl":null,"url":null,"abstract":"0.1. Let W be a Coxeter group and let S be the set of simple reflections of W ; we assume that S is finite. Let w 7→ |w| be the length function on W . Let H be the Iwahori-Hecke algebra attached to W . Recall that H is the free Z[u]-module with basis {Tw;w ∈ W} (u is an indeterminate) with (associative) multiplication characterized by TsTw = Tsw if s ∈ S, w ∈ W, |sw| = |w| + 1, TsTw = u 2 Tsw + (u 2 − 1)Tw if s ∈ S, w ∈ W, |sw| = |w| − 1. Let w 7→ w be an automorphism with square 1 of W preserving S and let I∗ = {w ∈ W ;w ∗ = w} be the set of “twisted involutions” in W . Let M be the free Z[u]-module with basis {ax; x ∈ I∗}. For any s ∈ S we define a Z[u]-linear map Ts : M −→ M by Tsax = uax + (u+ 1)asx if x ∈ I∗, sx = xs , |sx| = |x|+ 1, Tsax = (u 2 − u− 1)ax + (u 2 − u)asx if x ∈ I∗, sx = xs , |sx| = |x| − 1, Tsax = asxs∗ if x ∈ I∗, sx 6= xs , |sx| = |x|+ 1, Tsax = (u 2 − 1)ax + u 2 asxs∗ if x ∈ I∗, sx 6= xs , |sx| = |x| − 1. It is known that the maps Ts define an H-module structure on M . (See [LV12] for the case where W is a Weyl group or an affine Weyl group and [L12] for the general case; the case where W is a Weyl group and u is specialized to 1 was considered earlier in [K00].) When u is specialized to 0, H becomes the free Zmodule H0 with basis {Tw;w ∈ W} with (associative) multiplication characterized by TsTw = Tsw if s ∈ S, w ∈ W, |sw| = |w|+ 1, TsTw = −Tw if s ∈ S, w ∈ W, |sw| = |w| − 1 (a nil-Hecke algebra). From these formulas we see that there is a well defined monoid structure w,w 7→ w • w on W such that for any w,w in W we have TwTw′ = (−1) ′′Tw•w′ (equality in H0). In this monoid we have (a) (w • w) = w • w","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"11 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2022401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

0.1. Let W be a Coxeter group and let S be the set of simple reflections of W ; we assume that S is finite. Let w 7→ |w| be the length function on W . Let H be the Iwahori-Hecke algebra attached to W . Recall that H is the free Z[u]-module with basis {Tw;w ∈ W} (u is an indeterminate) with (associative) multiplication characterized by TsTw = Tsw if s ∈ S, w ∈ W, |sw| = |w| + 1, TsTw = u 2 Tsw + (u 2 − 1)Tw if s ∈ S, w ∈ W, |sw| = |w| − 1. Let w 7→ w be an automorphism with square 1 of W preserving S and let I∗ = {w ∈ W ;w ∗ = w} be the set of “twisted involutions” in W . Let M be the free Z[u]-module with basis {ax; x ∈ I∗}. For any s ∈ S we define a Z[u]-linear map Ts : M −→ M by Tsax = uax + (u+ 1)asx if x ∈ I∗, sx = xs , |sx| = |x|+ 1, Tsax = (u 2 − u− 1)ax + (u 2 − u)asx if x ∈ I∗, sx = xs , |sx| = |x| − 1, Tsax = asxs∗ if x ∈ I∗, sx 6= xs , |sx| = |x|+ 1, Tsax = (u 2 − 1)ax + u 2 asxs∗ if x ∈ I∗, sx 6= xs , |sx| = |x| − 1. It is known that the maps Ts define an H-module structure on M . (See [LV12] for the case where W is a Weyl group or an affine Weyl group and [L12] for the general case; the case where W is a Weyl group and u is specialized to 1 was considered earlier in [K00].) When u is specialized to 0, H becomes the free Zmodule H0 with basis {Tw;w ∈ W} with (associative) multiplication characterized by TsTw = Tsw if s ∈ S, w ∈ W, |sw| = |w|+ 1, TsTw = −Tw if s ∈ S, w ∈ W, |sw| = |w| − 1 (a nil-Hecke algebra). From these formulas we see that there is a well defined monoid structure w,w 7→ w • w on W such that for any w,w in W we have TwTw′ = (−1) ′′Tw•w′ (equality in H0). In this monoid we have (a) (w • w) = w • w
Weyl群和nil-Hecke代数的对合
0.1. 设W是一个考克斯特群S是W的简单反射集合;我们假设S是有限的。设w7→|w|为w上的长度函数。设H是附着在W上的Iwahori-Hecke代数。回想一下,H是基为{Tw;w∈w} (u是不定式)的自由Z[u]-模,其(结合)乘法的特征为:如果s∈s, w∈w,则TsTw = Tsw, |sw| = |w| + 1,如果s∈s, w∈w,则TsTw = u 2 Tsw + (u 2−1)Tw,则|sw| = |w|−1。设w7→w是w保持S的平方为1的自同构,且设I∗= {w∈w;w∗= w}是w中的“扭曲对合”集。设M为基为{ax;x∈I∗}。对于任何∈年代我们定义一个Z (u)线性映射Ts: M−→M×Tsax = uax + (u + 1) asx如果x∈我∗sx = x, x | sx | = | | + 1, Tsax = (u 2−−1)ax + (u 2−u) asx如果x∈我∗sx = x, x | sx | = | |−1,Tsax = asx我∗∗如果x∈,sx 6 = x, x | sx | = | | + 1, Tsax = (u 2−1)ax + u 2 asx我∗∗如果x∈,sx 6 = x, x | sx | = | |−1。已知映射t在M上定义了一个h模结构。(W为Weyl群或仿射Weyl群的情况见[LV12],一般情况见[L12];W是Weyl组,u专为1的情况在[K00]中已经考虑过。)当u特化为0时,H成为基{Tw;w∈w}的自由z模H0,其(结合)乘法的特征为:如果s∈s, w∈w,则TsTw = Tsw, |sw| = |w|+ 1,如果s∈s, w∈w,则TsTw =−Tw, |sw| = |w|−1(一个nil-Hecke代数)。从这些公式中我们可以看到,存在一个定义良好的单峰结构w, w7→w•w on w,使得对于任意w,w in w,我们有TwTw ' =(−1)" Tw•w '(在H0中相等)。在这个单oid中,我们有(a) (w•w) = w•w
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信