Robustness of electrocardiogram signal quality indices.

IF 0.3 4区 历史学 Q2 HISTORY
QUADERNI STORICI Pub Date : 2022-04-01 Epub Date: 2022-04-13 DOI:10.1098/rsif.2022.0012
Saifur Rahman, Chandan Karmakar, Iynkaran Natgunanathan, John Yearwood, Marimuthu Palaniswami
{"title":"Robustness of electrocardiogram signal quality indices.","authors":"Saifur Rahman, Chandan Karmakar, Iynkaran Natgunanathan, John Yearwood, Marimuthu Palaniswami","doi":"10.1098/rsif.2022.0012","DOIUrl":null,"url":null,"abstract":"<p><p>Electrocardiogram (ECG) signal quality indices (SQIs) are essential for improving diagnostic accuracy and reliability of ECG analysis systems. In various practical applications, the ECG signals are corrupted by different types of noise. These corrupted ECG signals often provide insufficient and incorrect information regarding a patient's health. To solve this problem, signal quality measurements should be made before an ECG signal is used for decision-making. This paper investigates the robustness of existing popular statistical signal quality indices (SSQIs): relative power of QRS complex (SQI<sub><i>p</i></sub>), skewness (SQI<sub>skew</sub>), signal-to-noise ratio (SQI<sub>snr</sub>), higher order statistics SQI (SQI<sub>hos</sub>) and peakedness of kurtosis (SQI<sub>kur</sub>). We analysed the robustness of these SSQIs against different window sizes across diverse datasets. Results showed that the performance of SSQIs considerably fluctuates against varying datasets, whereas the impact of varying window sizes was minimal. This fluctuation occurred due to the use of a static threshold value for classifying noise-free ECG signals from the raw ECG signals. Another drawback of these SSQIs is the bias towards noise-free ECG signals, that limits their usefulness in clinical settings. In summary, the fixed threshold-based SSQIs cannot be used as a robust noise detection system. In order to solve this fixed threshold problem, other techniques can be developed using adaptive thresholds and machine-learning mechanisms.</p>","PeriodicalId":45303,"journal":{"name":"QUADERNI STORICI","volume":"50 1","pages":"20220012"},"PeriodicalIF":0.3000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9006023/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"QUADERNI STORICI","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2022.0012","RegionNum":4,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HISTORY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocardiogram (ECG) signal quality indices (SQIs) are essential for improving diagnostic accuracy and reliability of ECG analysis systems. In various practical applications, the ECG signals are corrupted by different types of noise. These corrupted ECG signals often provide insufficient and incorrect information regarding a patient's health. To solve this problem, signal quality measurements should be made before an ECG signal is used for decision-making. This paper investigates the robustness of existing popular statistical signal quality indices (SSQIs): relative power of QRS complex (SQIp), skewness (SQIskew), signal-to-noise ratio (SQIsnr), higher order statistics SQI (SQIhos) and peakedness of kurtosis (SQIkur). We analysed the robustness of these SSQIs against different window sizes across diverse datasets. Results showed that the performance of SSQIs considerably fluctuates against varying datasets, whereas the impact of varying window sizes was minimal. This fluctuation occurred due to the use of a static threshold value for classifying noise-free ECG signals from the raw ECG signals. Another drawback of these SSQIs is the bias towards noise-free ECG signals, that limits their usefulness in clinical settings. In summary, the fixed threshold-based SSQIs cannot be used as a robust noise detection system. In order to solve this fixed threshold problem, other techniques can be developed using adaptive thresholds and machine-learning mechanisms.

心电图信号质量指标的鲁棒性。
心电图(ECG)信号质量指数(SQIs)对于提高诊断准确性和心电图分析系统的可靠性至关重要。在各种实际应用中,心电信号会受到不同类型噪声的干扰。这些被破坏的心电信号通常无法提供有关病人健康状况的足够和不正确的信息。为解决这一问题,应在使用心电信号进行决策之前对信号质量进行测量。本文研究了现有流行的统计信号质量指标(SSQIs)的稳健性:QRS 波群相对功率(SQIp)、偏斜度(SQIskew)、信噪比(SQIsnr)、高阶统计 SQI(SQIhos)和峰度(SQIkur)。我们分析了这些 SSQIs 在不同数据集上针对不同窗口大小的鲁棒性。结果表明,SSQIs 的性能随数据集的变化而大幅波动,而不同窗口大小的影响则微乎其微。出现这种波动的原因是在对原始心电信号进行无噪声心电信号分类时使用了静态阈值。这些 SSQIs 的另一个缺点是偏向于无噪声心电信号,这限制了它们在临床环境中的实用性。总之,基于固定阈值的 SSQIs 无法用作稳健的噪声检测系统。为了解决这个固定阈值问题,可以利用自适应阈值和机器学习机制开发其他技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
QUADERNI STORICI
QUADERNI STORICI HISTORY-
CiteScore
0.30
自引率
0.00%
发文量
0
期刊介绍: Quaderni storici è una tra le più autorevoli sedi della ricerca storica internazionale e copre un arco cronologico che va dalla storia antica a quella contemporanea. Quaderni storici si occupa di storia sociale, storia economica, storia di genere e «microstoria». Si è avvalsa e si avvale dell"apporto di studiosi italiani e stranieri (da Alberto Caracciolo a Maurice Aymard, da Carlo Ginzburg a Peter Burke, a Carlo Poni e Pasquale Villani, a Christiane Klapisch e Gianna Pomata). Ogni fascicolo è costituito da una parte monografica che sviluppa, a più voci, grandi affreschi tematici.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信