Multilayer sheets for thermoforming non thermoformable polymers

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
Lisa-Maria Wittmann, D. Drummer
{"title":"Multilayer sheets for thermoforming non thermoformable polymers","authors":"Lisa-Maria Wittmann, D. Drummer","doi":"10.1177/87560879211037387","DOIUrl":null,"url":null,"abstract":"Multilayer sheets were used for thermoforming non thermoformable polymers in order to face the challenge of semi-crystalline polymers like low melt-stiffness. Mono- and 2-layer sheets consisting of different polypropylene (PP) homopolymers were extruded on a twin screw extruder. The PP viscosity as was measured by melt flow rate (MFR) 3 g/10 min., 12 g/10 min., 22 g/10 min. and 50 g/10 min. The layer ratio was varied between the equal layer ratio (A50/B50) of the individual layers and the low (A30/B70) or high viscosity ratio (A70/B30). The extrusion results show that for extreme viscosity differences (MFR3 and MFR50), the critical layer ratios known from the literature are only valid to a limited extent. The critical viscosity ratio < 4, which is known from the literature, is much lower here and should be less than 3. The investigation of thermoformability on laboratory scale of the extruded PP sheets with different viscosities showed that the low viscous layer position has only a marginal influence on the general thermoformability. Thermoforming of materials that are not thermoformable, with a storage modulus of less than 10³ Pa and a ratio between storage and loss modulus (tan δ) greater than 1, becomes possible using a multilayer sheet independant of the layer ratio. If the layer with higher viscosity acts as a stabilizing layer, thermoforming is possible.","PeriodicalId":16823,"journal":{"name":"Journal of Plastic Film & Sheeting","volume":"1 1","pages":"225 - 244"},"PeriodicalIF":2.1000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Film & Sheeting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/87560879211037387","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 4

Abstract

Multilayer sheets were used for thermoforming non thermoformable polymers in order to face the challenge of semi-crystalline polymers like low melt-stiffness. Mono- and 2-layer sheets consisting of different polypropylene (PP) homopolymers were extruded on a twin screw extruder. The PP viscosity as was measured by melt flow rate (MFR) 3 g/10 min., 12 g/10 min., 22 g/10 min. and 50 g/10 min. The layer ratio was varied between the equal layer ratio (A50/B50) of the individual layers and the low (A30/B70) or high viscosity ratio (A70/B30). The extrusion results show that for extreme viscosity differences (MFR3 and MFR50), the critical layer ratios known from the literature are only valid to a limited extent. The critical viscosity ratio < 4, which is known from the literature, is much lower here and should be less than 3. The investigation of thermoformability on laboratory scale of the extruded PP sheets with different viscosities showed that the low viscous layer position has only a marginal influence on the general thermoformability. Thermoforming of materials that are not thermoformable, with a storage modulus of less than 10³ Pa and a ratio between storage and loss modulus (tan δ) greater than 1, becomes possible using a multilayer sheet independant of the layer ratio. If the layer with higher viscosity acts as a stabilizing layer, thermoforming is possible.
用于热成型非热成型聚合物的多层薄板
为了解决半结晶性聚合物熔融刚度低的难题,热成型非热成型聚合物采用多层片材。在双螺杆挤出机上挤出了由不同聚丙烯(PP)均聚物组成的单层和双层板材。用熔体流动速率(MFR) 3 g/10 min测定PP粘度。, 12g / 10min。, 22g / 10min。50g / 10min。层比在各层等层比(A50/B50)和低粘比(A30/B70)或高粘比(A70/B30)之间变化。挤压结果表明,对于极端粘度差(MFR3和MFR50),从文献中已知的临界层比仅在有限程度上有效。从文献中已知的临界粘度比< 4,在这里要低得多,应该小于3。在实验室尺度上对不同黏度的挤出PP板材的热成型性能进行了研究,结果表明,低黏度层的位置对总体热成型性能的影响很小。不可热成型材料的热成型,其存储模量小于10³Pa,存储与损耗模量(tan δ)之比大于1,可以使用独立于层比的多层片材。如果具有较高粘度的层作为稳定层,热成型是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plastic Film & Sheeting
Journal of Plastic Film & Sheeting 工程技术-材料科学:膜
CiteScore
6.00
自引率
16.10%
发文量
33
审稿时长
>12 weeks
期刊介绍: The Journal of Plastic Film and Sheeting improves communication concerning plastic film and sheeting with major emphasis on the propogation of knowledge which will serve to advance the science and technology of these products and thus better serve industry and the ultimate consumer. The journal reports on the wide variety of advances that are rapidly taking place in the technology of plastic film and sheeting. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信