Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato

K. Shirasawa, H. Hirakawa, S. Isobe
{"title":"Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato","authors":"K. Shirasawa, H. Hirakawa, S. Isobe","doi":"10.1093/dnares/dsw004","DOIUrl":null,"url":null,"abstract":"Double-digest restriction site-associated DNA sequencing (ddRAD-Seq) enables high-throughput genome-wide genotyping with next-generation sequencing technology. Consequently, this method has become popular in plant genetics and breeding. Although computational in silico prediction of restriction sites from the genome sequence is recognized as an effective approach for choosing the restriction enzymes to be used, few reports have evaluated the in silico predictions in actual experimental data. In this study, we designed and demonstrated a workflow for in silico and empirical ddRAD-Seq analysis in tomato, as follows: (i) in silico prediction of optimum restriction enzymes from the reference genome, (ii) verification of the prediction by actual ddRAD-Seq data of four restriction enzyme combinations, (iii) establishment of a computational data processing pipeline for high-confidence single nucleotide polymorphism (SNP) calling, and (iv) validation of SNP accuracy by construction of genetic linkage maps. The quality of SNPs based on de novo assembly reference of the ddRAD-Seq reads was comparable with that of SNPs obtained using the published reference genome of tomato. Comparisons of SNP calls in diverse tomato lines revealed that SNP density in the genome influenced the detectability of SNPs by ddRAD-Seq. In silico prediction prior to actual analysis contributed to optimization of the experimental conditions for ddRAD-Seq, e.g. choices of enzymes and plant materials. Following optimization, this ddRAD-Seq pipeline could help accelerate genetics, genomics, and molecular breeding in both model and non-model plants, including crops.","PeriodicalId":11212,"journal":{"name":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","volume":"11 1","pages":"145 - 153"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/dnares/dsw004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 99

Abstract

Double-digest restriction site-associated DNA sequencing (ddRAD-Seq) enables high-throughput genome-wide genotyping with next-generation sequencing technology. Consequently, this method has become popular in plant genetics and breeding. Although computational in silico prediction of restriction sites from the genome sequence is recognized as an effective approach for choosing the restriction enzymes to be used, few reports have evaluated the in silico predictions in actual experimental data. In this study, we designed and demonstrated a workflow for in silico and empirical ddRAD-Seq analysis in tomato, as follows: (i) in silico prediction of optimum restriction enzymes from the reference genome, (ii) verification of the prediction by actual ddRAD-Seq data of four restriction enzyme combinations, (iii) establishment of a computational data processing pipeline for high-confidence single nucleotide polymorphism (SNP) calling, and (iv) validation of SNP accuracy by construction of genetic linkage maps. The quality of SNPs based on de novo assembly reference of the ddRAD-Seq reads was comparable with that of SNPs obtained using the published reference genome of tomato. Comparisons of SNP calls in diverse tomato lines revealed that SNP density in the genome influenced the detectability of SNPs by ddRAD-Seq. In silico prediction prior to actual analysis contributed to optimization of the experimental conditions for ddRAD-Seq, e.g. choices of enzymes and plant materials. Following optimization, this ddRAD-Seq pipeline could help accelerate genetics, genomics, and molecular breeding in both model and non-model plants, including crops.
基于经验优化和计算机优化的番茄双酶切酶切位点相关DNA测序分析流程
双酶切酶切位点相关DNA测序(ddRAD-Seq)通过下一代测序技术实现了高通量全基因组基因分型。因此,该方法已在植物遗传育种中得到广泛应用。尽管从基因组序列中计算限制性内切位点的计算机预测被认为是选择要使用的限制性内切酶的有效方法,但很少有报道在实际实验数据中评估计算机预测。在本研究中,我们设计并演示了番茄ddRAD-Seq的计算机和实证分析流程,如下所示:(i)从参考基因组中进行最佳限制性内切酶的计算机预测,(ii)通过四种限制性内切酶组合的实际ddRAD-Seq数据验证预测,(iii)建立高置信度单核苷酸多态性(SNP)调用的计算数据处理管道,以及(iv)通过构建遗传连锁图验证SNP的准确性。基于ddRAD-Seq reads从头组装参考的snp质量与使用已发表的番茄参考基因组获得的snp质量相当。不同番茄品系的SNP呼叫比较表明,基因组中的SNP密度影响了ddRAD-Seq对SNP的检测能力。在实际分析之前的计算机预测有助于优化ddRAD-Seq的实验条件,例如酶和植物材料的选择。经过优化,该ddRAD-Seq管道可以帮助加速模型和非模型植物(包括作物)的遗传学、基因组学和分子育种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信