{"title":"A Support Vector Machine Implementation for Traffic Assignment Problem","authors":"J. González-Vergara, N. Serrano, Cristhian Iza","doi":"10.1145/3479240.3488502","DOIUrl":null,"url":null,"abstract":"Simulating urban mobility scenarios is a useful tool for researchers in multiple fields like Urban Planning, Traffic Optimization, CO$^2$ Emissions Analysis, Performance Evaluation of Protocols for Connected Vehicles, among others. SUMO handles microscopic traffic simulations and allows communication to Python language through an API which is also shared by VEINS. This communication channel lets researchers interact with the simulation on-live, facilitating the implementation of state-of-the-art algorithms from Machine Learning (ML) and Artificial Intelligence (AI). On the other hand, OMNeT++ is a framework to manage and analyze communication protocols of mobile networks. We experimentally evaluated the training of a Support Vector Machine (SVM) in the SUMO-VEINS-OMNeT++ framework. Our experiments show the best classification model for a particular traffic light assignment scenario.","PeriodicalId":55557,"journal":{"name":"Ad Hoc & Sensor Wireless Networks","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc & Sensor Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3479240.3488502","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Simulating urban mobility scenarios is a useful tool for researchers in multiple fields like Urban Planning, Traffic Optimization, CO$^2$ Emissions Analysis, Performance Evaluation of Protocols for Connected Vehicles, among others. SUMO handles microscopic traffic simulations and allows communication to Python language through an API which is also shared by VEINS. This communication channel lets researchers interact with the simulation on-live, facilitating the implementation of state-of-the-art algorithms from Machine Learning (ML) and Artificial Intelligence (AI). On the other hand, OMNeT++ is a framework to manage and analyze communication protocols of mobile networks. We experimentally evaluated the training of a Support Vector Machine (SVM) in the SUMO-VEINS-OMNeT++ framework. Our experiments show the best classification model for a particular traffic light assignment scenario.
期刊介绍:
Ad Hoc & Sensor Wireless Networks seeks to provide an opportunity for researchers from computer science, engineering and mathematical backgrounds to disseminate and exchange knowledge in the rapidly emerging field of ad hoc and sensor wireless networks. It will comprehensively cover physical, data-link, network and transport layers, as well as application, security, simulation and power management issues in sensor, local area, satellite, vehicular, personal, and mobile ad hoc networks.