Benchmark Study and Uncertainty Assessment of Planar Motion Mechanism Tests on KVLCC2 in a Circulating Water Channel

Chengqian Ma, N. Ma, X. Gu
{"title":"Benchmark Study and Uncertainty Assessment of Planar Motion Mechanism Tests on KVLCC2 in a Circulating Water Channel","authors":"Chengqian Ma, N. Ma, X. Gu","doi":"10.1115/omae2021-62671","DOIUrl":null,"url":null,"abstract":"\n The benchmark experiment research for the maneuverability of a small-scaled ship model is critical for investigating the scaled effect on the maneuvering hydrodynamic derivatives, and validating the CFD technology. Till now, there is little research on the benchmark study and uncertainty analysis for the small-scaled ship which is frequently used in the Circulating Water Channel (CWC). Therefore, an experimental study of the planar motion mechanism (PMM) tests is performed in the CWC of the SJTU. The PMM tests performed in the CWC can avoid some disadvantages of those in the towing tank, such as the limitations on the acquisition time and frequency due to the size of the towing tank, interference of the carriage on the signal acquisition. In addition, the flow field visualization for the tests in the CWC is easier to achieve compared with the experiments in the towing tank, which helps the scholars to understand the characteristic of the wake field during maneuvers. The benchmark ship is the KVLCC2 with a scaled ratio of 1/128.77. The hull forces are recorded and processed to obtain the maneuvering hydrodynamic derivatives. To assess the quality of the acquired data, randomness analysis, stationarity analysis, normality analysis, and statistical convergence are performed for the PMM tests in the CWC for the first time. Finally, the uncertainty analysis (UA) method for the PMM tests performed in the CWC is also developed.","PeriodicalId":23784,"journal":{"name":"Volume 6: Ocean Engineering","volume":"140 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-62671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The benchmark experiment research for the maneuverability of a small-scaled ship model is critical for investigating the scaled effect on the maneuvering hydrodynamic derivatives, and validating the CFD technology. Till now, there is little research on the benchmark study and uncertainty analysis for the small-scaled ship which is frequently used in the Circulating Water Channel (CWC). Therefore, an experimental study of the planar motion mechanism (PMM) tests is performed in the CWC of the SJTU. The PMM tests performed in the CWC can avoid some disadvantages of those in the towing tank, such as the limitations on the acquisition time and frequency due to the size of the towing tank, interference of the carriage on the signal acquisition. In addition, the flow field visualization for the tests in the CWC is easier to achieve compared with the experiments in the towing tank, which helps the scholars to understand the characteristic of the wake field during maneuvers. The benchmark ship is the KVLCC2 with a scaled ratio of 1/128.77. The hull forces are recorded and processed to obtain the maneuvering hydrodynamic derivatives. To assess the quality of the acquired data, randomness analysis, stationarity analysis, normality analysis, and statistical convergence are performed for the PMM tests in the CWC for the first time. Finally, the uncertainty analysis (UA) method for the PMM tests performed in the CWC is also developed.
循环水道中KVLCC2平面运动机构试验基准研究及不确定度评定
小型船舶模型机动性能基准试验研究对于研究船舶机动水动力导数的尺度效应和验证CFD技术具有重要意义。对于在循环水航道中频繁使用的小型船舶,目前对其基准研究和不确定性分析的研究较少。为此,在上海交通大学CWC进行了平面运动机构(PMM)试验研究。在CWC中进行PMM测试可以避免拖曳箱中进行PMM测试的一些缺点,如拖曳箱的大小对采集时间和频率的限制,以及小车对信号采集的干扰。此外,与拖曳舱试验相比,CWC试验的流场可视化更容易实现,这有助于学者们了解机动过程中尾流场的特性。基准船是KVLCC2,比例为1/128.77。记录船体力并对其进行处理,得到船体的机动水动力导数。为了评估所获得数据的质量,首次对CWC的PMM试验进行了随机性分析、平稳性分析、正态性分析和统计收敛性分析。最后,提出了在CWC中进行的PMM试验的不确定度分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信