Visualization and interaction in the atlas of the human brain, head and neck

W. Nowinski
{"title":"Visualization and interaction in the atlas of the human brain, head and neck","authors":"W. Nowinski","doi":"10.22630/mgv.2014.23.3.1","DOIUrl":null,"url":null,"abstract":"Our ultimate objective is to create a holistic and reference atlas of the whole adult human brain along with the head and neck. Several techniques have been employed to create atlases. Here we discuss the atlas design and use from a point of view of two key techniques, visualization and interaction. For visualization, surface rendering of a geometrical model of the brain, head and neck is employed. Geometrical model ensures anatomic parcellability, high (sub-pixel) resolution, editibility, extendibility, structure separability, structure-to-structure conflict detection, and integration a knowledge-based content with the atlas. Interaction allows the user to create and explore any region of interest along with its surroundings just with a few clicks, taking into account that the atlas provides a rich set of functions and the number of atlas components is about 3,000. There are seven types of interaction enabling to: select and deselect tissue classes/groups/individual structures, do real-time manipulation, do virtual dissections, select and scroll the original scans, query a structure to get its label or location, get stereotactic coordinates and measure distances, and support other functionality. This design of visualization and interaction provides a fast and easy to use solution, and allows the atlas to run on desktop and mobile iPad and Android-based platforms.","PeriodicalId":39750,"journal":{"name":"Machine Graphics and Vision","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/mgv.2014.23.3.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Our ultimate objective is to create a holistic and reference atlas of the whole adult human brain along with the head and neck. Several techniques have been employed to create atlases. Here we discuss the atlas design and use from a point of view of two key techniques, visualization and interaction. For visualization, surface rendering of a geometrical model of the brain, head and neck is employed. Geometrical model ensures anatomic parcellability, high (sub-pixel) resolution, editibility, extendibility, structure separability, structure-to-structure conflict detection, and integration a knowledge-based content with the atlas. Interaction allows the user to create and explore any region of interest along with its surroundings just with a few clicks, taking into account that the atlas provides a rich set of functions and the number of atlas components is about 3,000. There are seven types of interaction enabling to: select and deselect tissue classes/groups/individual structures, do real-time manipulation, do virtual dissections, select and scroll the original scans, query a structure to get its label or location, get stereotactic coordinates and measure distances, and support other functionality. This design of visualization and interaction provides a fast and easy to use solution, and allows the atlas to run on desktop and mobile iPad and Android-based platforms.
人类大脑、头部和颈部图谱的可视化和交互作用
我们的最终目标是创建一个完整的成人大脑以及头部和颈部的参考图谱。已经采用了几种技术来创建地图集。本文从可视化和交互两个关键技术的角度来讨论地图集的设计和使用。为了可视化,使用了脑、头和颈部几何模型的表面渲染。几何模型确保了解剖可分割性、高(亚像素)分辨率、可编辑性、可扩展性、结构可分离性、结构对结构的冲突检测以及基于知识的内容与图谱的集成。交互允许用户创建和探索任何感兴趣的区域及其周围环境,只需点击几下,考虑到地图集提供了丰富的功能集,地图集组件的数量约为3000。有七种类型的交互可以实现:选择和取消选择组织类/组/单个结构,进行实时操作,进行虚拟解剖,选择和滚动原始扫描,查询结构以获得其标签或位置,获得立体定向坐标和测量距离,以及支持其他功能。这种可视化和交互设计提供了一种快速易用的解决方案,并允许地图集在桌面和移动iPad以及基于android的平台上运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine Graphics and Vision
Machine Graphics and Vision Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
0.40
自引率
0.00%
发文量
1
期刊介绍: Machine GRAPHICS & VISION (MGV) is a refereed international journal, published quarterly, providing a scientific exchange forum and an authoritative source of information in the field of, in general, pictorial information exchange between computers and their environment, including applications of visual and graphical computer systems. The journal concentrates on theoretical and computational models underlying computer generated, analysed, or otherwise processed imagery, in particular: - image processing - scene analysis, modeling, and understanding - machine vision - pattern matching and pattern recognition - image synthesis, including three-dimensional imaging and solid modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信