{"title":"Properties of the affine-invariant ensemble sampler's ‘stretch move’ in high dimensions","authors":"David Huijser, Jesse Goodman, Brendon J. Brewer","doi":"10.1111/anzs.12358","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We present theoretical and practical properties of the affine-invariant ensemble sampler Markov Chain Monte Carlo method. In high dimensions, the sampler's ‘stretch move’ has unusual and undesirable properties. We demonstrate this with an <i>n</i>-dimensional correlated Gaussian toy problem with a known mean and covariance structure, and a multivariate version of the Rosenbrock problem. Visual inspection of a trace plots suggests the burn-in period is short. Upon closer inspection, we discover the mean and the variance of the target distribution do not match the known values, and the chain takes a very long time to converge. This problem becomes severe as <i>n</i> increases beyond 50. We also applied different diagnostics adapted to be applicable to ensemble methods to determine any lack of convergence. The diagnostics include the Gelman–Rubin method, the Heidelberger–Welch test, the integrated autocorrelation and the acceptance rate. The trace plot of individual walkers appears to be useful as well. We therefore conclude that the stretch move should be used with caution in moderate to high dimensions. We also present some heuristic results explaining this behaviour.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"64 1","pages":"1-26"},"PeriodicalIF":0.8000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12358","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6
Abstract
We present theoretical and practical properties of the affine-invariant ensemble sampler Markov Chain Monte Carlo method. In high dimensions, the sampler's ‘stretch move’ has unusual and undesirable properties. We demonstrate this with an n-dimensional correlated Gaussian toy problem with a known mean and covariance structure, and a multivariate version of the Rosenbrock problem. Visual inspection of a trace plots suggests the burn-in period is short. Upon closer inspection, we discover the mean and the variance of the target distribution do not match the known values, and the chain takes a very long time to converge. This problem becomes severe as n increases beyond 50. We also applied different diagnostics adapted to be applicable to ensemble methods to determine any lack of convergence. The diagnostics include the Gelman–Rubin method, the Heidelberger–Welch test, the integrated autocorrelation and the acceptance rate. The trace plot of individual walkers appears to be useful as well. We therefore conclude that the stretch move should be used with caution in moderate to high dimensions. We also present some heuristic results explaining this behaviour.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.