{"title":"Hardy’s inequalities in finite dimensional Hilbert spaces","authors":"D. Dimitrov, I. Gadjev, G. Nikolov, R. Uluchev","doi":"10.1090/PROC/15467","DOIUrl":null,"url":null,"abstract":"We study the behaviour of the smallest possible constants $d_n$ and $c_n$ in Hardy's inequalities $$ \\sum_{k=1}^{n}\\Big(\\frac{1}{k}\\sum_{j=1}^{k}a_j\\Big)^2\\leq d_n\\,\\sum_{k=1}^{n}a_k^2, \\qquad (a_1,\\ldots,a_n) \\in \\mathbb{R}^n $$ and $$ \\int_{0}^{\\infty}\\Bigg(\\frac{1}{x}\\int\\limits_{0}^{x}f(t)\\,dt\\Bigg)^2 dx \\leq c_n \\int_{0}^{\\infty} f^2(x)\\,dx, \\ \\ f\\in \\mathcal{H}_n, $$ for the finite dimensional spaces $\\mathbb{R}^n$ and $\\mathcal{H}_n:=\\{f\\,:\\, \\int_0^x f(t) dt =e^{-x/2}\\,p(x)\\ :\\ p\\in \\mathcal{P}_n, p(0)=0\\}$, where $\\mathcal{P}_n$ is the set of real-valued algebraic polynomials of degree not exceeding $n$. The constants $d_n$ and $c_n$ are identified as the smallest eigenvalues of certain Jacobi matrices and the two-sided estimates for $d_n$ and $c_n$ of the form $$ 4-\\frac{c}{\\ln n} 0\\, $$ are established.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/15467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We study the behaviour of the smallest possible constants $d_n$ and $c_n$ in Hardy's inequalities $$ \sum_{k=1}^{n}\Big(\frac{1}{k}\sum_{j=1}^{k}a_j\Big)^2\leq d_n\,\sum_{k=1}^{n}a_k^2, \qquad (a_1,\ldots,a_n) \in \mathbb{R}^n $$ and $$ \int_{0}^{\infty}\Bigg(\frac{1}{x}\int\limits_{0}^{x}f(t)\,dt\Bigg)^2 dx \leq c_n \int_{0}^{\infty} f^2(x)\,dx, \ \ f\in \mathcal{H}_n, $$ for the finite dimensional spaces $\mathbb{R}^n$ and $\mathcal{H}_n:=\{f\,:\, \int_0^x f(t) dt =e^{-x/2}\,p(x)\ :\ p\in \mathcal{P}_n, p(0)=0\}$, where $\mathcal{P}_n$ is the set of real-valued algebraic polynomials of degree not exceeding $n$. The constants $d_n$ and $c_n$ are identified as the smallest eigenvalues of certain Jacobi matrices and the two-sided estimates for $d_n$ and $c_n$ of the form $$ 4-\frac{c}{\ln n} 0\, $$ are established.