A New Fitting Scattered Data Method based on the Criterion of Geometric Distance

Guowei Yang, Jia Xu
{"title":"A New Fitting Scattered Data Method based on the Criterion of Geometric Distance","authors":"Guowei Yang,&nbsp;Jia Xu","doi":"10.1016/j.aasri.2014.05.007","DOIUrl":null,"url":null,"abstract":"<div><p>The traditional data fitting method based on least square method is not good for vector data fitting whose independent variable is random. So this paper proposes a new criterion of data fitting which is the least quadratic sum of geometrical distance, and brings forward the new fitting scattered data method based on the new criterion. At the same time the paper puts forward the optimization algorithm for the solution of the data fitting parameter. Simulation experiments show that the fitting precision of the new method is higher than the one of least square method for data fitting of vector, whose independent variable is random.</p></div>","PeriodicalId":100008,"journal":{"name":"AASRI Procedia","volume":"6 ","pages":"Pages 41-48"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aasri.2014.05.007","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AASRI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212671614000080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The traditional data fitting method based on least square method is not good for vector data fitting whose independent variable is random. So this paper proposes a new criterion of data fitting which is the least quadratic sum of geometrical distance, and brings forward the new fitting scattered data method based on the new criterion. At the same time the paper puts forward the optimization algorithm for the solution of the data fitting parameter. Simulation experiments show that the fitting precision of the new method is higher than the one of least square method for data fitting of vector, whose independent variable is random.

基于几何距离准则的散点数据拟合新方法
传统的基于最小二乘法的数据拟合方法不适用于自变量为随机的矢量数据拟合。为此,本文提出了一种新的数据拟合准则,即几何距离的二次和最小,并在此基础上提出了一种新的离散数据拟合方法。同时提出了数据拟合参数求解的优化算法。仿真实验表明,对于自变量为随机的矢量数据拟合,新方法的拟合精度高于最小二乘法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信