{"title":"HeteFed: Heterogeneous Federated Learning with Privacy-Preserving Binary Low-Rank Matrix Decomposition Method","authors":"Jiaqi Liu, Kaiyu Huang, Lunchen Xie","doi":"10.1109/CSCWD57460.2023.10152714","DOIUrl":null,"url":null,"abstract":"Federated learning is a machine learning paradigm where many clients collaboratively train a machine learning model while ensuring the nondisclosure of local data sets. Existing federated learning methods conduct optimization over the same model structure, which ensures the convenience of parameter updates. However, the same structure among clients and the server may pose risks of privacy leakage as parameters from one’s model can fit in others’ models. In this paper, we propose a heterogeneous federated learning method to preserve privacy. Each client utilizes neural architecture search to determine distinct models via local data and update the server model via a federated learning framework with knowledge distillation. Besides, we develop a privacy-preserving binary low-rank matrix decomposition method (Blow), i.e., decomposing the output matrix into two low-rank binary matrices, to further ensure the secrecy of distilled information. A simple but efficient alternating optimization method is proposed to address a key subproblem arising from the binary low-rank matrix decomposition, which falls into the category of the Np-hard bipartite boolean quadratic programming. Based on extensive experiments over the image classification task, we show our algorithm provides satisfactory accuracy and outperforms baseline algorithms in both privacy protection and communication efficiency.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"11 1","pages":"1238-1244"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152714","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Federated learning is a machine learning paradigm where many clients collaboratively train a machine learning model while ensuring the nondisclosure of local data sets. Existing federated learning methods conduct optimization over the same model structure, which ensures the convenience of parameter updates. However, the same structure among clients and the server may pose risks of privacy leakage as parameters from one’s model can fit in others’ models. In this paper, we propose a heterogeneous federated learning method to preserve privacy. Each client utilizes neural architecture search to determine distinct models via local data and update the server model via a federated learning framework with knowledge distillation. Besides, we develop a privacy-preserving binary low-rank matrix decomposition method (Blow), i.e., decomposing the output matrix into two low-rank binary matrices, to further ensure the secrecy of distilled information. A simple but efficient alternating optimization method is proposed to address a key subproblem arising from the binary low-rank matrix decomposition, which falls into the category of the Np-hard bipartite boolean quadratic programming. Based on extensive experiments over the image classification task, we show our algorithm provides satisfactory accuracy and outperforms baseline algorithms in both privacy protection and communication efficiency.
期刊介绍:
Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW.
The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas.
The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.