Regressing Kernel Dictionary Learning

Kriti Kumar, A. Majumdar, M. G. Chandra, A. A. Kumar
{"title":"Regressing Kernel Dictionary Learning","authors":"Kriti Kumar, A. Majumdar, M. G. Chandra, A. A. Kumar","doi":"10.1109/ICASSP.2018.8462566","DOIUrl":null,"url":null,"abstract":"In this paper, we present a kernelized dictionary learning framework for carrying out regression to model signals having a complex nonlinear nature. A joint optimization is carried out where the regression weights are learnt together with the dictionary and coefficients. Relevant formulation and dictionary building steps are provided. To demonstrate the effectiveness of the proposed technique, elaborate experimental results using different real-life datasets are presented. The results show that non-linear dictionary is more accurate for data modeling and provides significant improvement in estimation accuracy over the other popular traditional techniques especially when the data is highly non-linear.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"10 1","pages":"2756-2760"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we present a kernelized dictionary learning framework for carrying out regression to model signals having a complex nonlinear nature. A joint optimization is carried out where the regression weights are learnt together with the dictionary and coefficients. Relevant formulation and dictionary building steps are provided. To demonstrate the effectiveness of the proposed technique, elaborate experimental results using different real-life datasets are presented. The results show that non-linear dictionary is more accurate for data modeling and provides significant improvement in estimation accuracy over the other popular traditional techniques especially when the data is highly non-linear.
回归核字典学习
在本文中,我们提出了一个核化字典学习框架,用于对具有复杂非线性性质的模型信号进行回归。将回归权值与字典和系数一起学习,进行联合优化。给出了相关的表述和词典构建步骤。为了证明所提出的技术的有效性,给出了使用不同现实数据集的详细实验结果。结果表明,非线性字典对数据建模更为准确,特别是在数据高度非线性的情况下,其估计精度比其他流行的传统方法有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信