Ostrowski type inequalities via exponentially $s$-convexity on time scales

S. Georgiev, V. Darvish, E. Nwaeze
{"title":"Ostrowski type inequalities via exponentially $s$-convexity on time scales","authors":"S. Georgiev, V. Darvish, E. Nwaeze","doi":"10.31197/atnaa.1021333","DOIUrl":null,"url":null,"abstract":"We introduce the concept of exponentially $s$-convexity in the second sense on a time scale interval. We prove among other things that if $f: [a, b]\\to \\mathbb{R}$ is an exponentially $s$-convex function, then\n\\begin{align*}\n&\\frac{1}{b-a}\\int_a^b f(t)\\Delta t\\\\\n&\\leq \\frac{f(a)}{e_{\\beta}(a, x_0) (b-a)^{2s}}(h_2(a, b))^s+\\frac{f(b)}{e_{\\beta}(b, x_0) (b-a)^{2s}}(h_2(b, a))^s,\n\\end{align*}\nwhere $\\beta$ is a positively regressive function. By considering special cases of our time scale, one can derive loads of interesting new inequalities. The results obtained herein are novel to best of our knowledge and they complement existing results in the literature.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.1021333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the concept of exponentially $s$-convexity in the second sense on a time scale interval. We prove among other things that if $f: [a, b]\to \mathbb{R}$ is an exponentially $s$-convex function, then \begin{align*} &\frac{1}{b-a}\int_a^b f(t)\Delta t\\ &\leq \frac{f(a)}{e_{\beta}(a, x_0) (b-a)^{2s}}(h_2(a, b))^s+\frac{f(b)}{e_{\beta}(b, x_0) (b-a)^{2s}}(h_2(b, a))^s, \end{align*} where $\beta$ is a positively regressive function. By considering special cases of our time scale, one can derive loads of interesting new inequalities. The results obtained herein are novel to best of our knowledge and they complement existing results in the literature.
Ostrowski型不等式在时间尺度上的指数凸性
我们在时间尺度区间上引入第二种意义上的指数级$s$ -凸性的概念。我们证明了如果$f: [a, b]\to \mathbb{R}$是一个指数级$s$ -凸函数,那么\begin{align*}&\frac{1}{b-a}\int_a^b f(t)\Delta t\\&\leq \frac{f(a)}{e_{\beta}(a, x_0) (b-a)^{2s}}(h_2(a, b))^s+\frac{f(b)}{e_{\beta}(b, x_0) (b-a)^{2s}}(h_2(b, a))^s,\end{align*}其中$\beta$是一个正回归函数。通过考虑时间尺度的特殊情况,我们可以推导出许多有趣的新不等式。本文所获得的结果就我们所知是新颖的,它们补充了文献中现有的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信