Pedestrian detection using dense LDB descriptor combined with HOG

A. J. Das, Navajit Saikia
{"title":"Pedestrian detection using dense LDB descriptor combined with HOG","authors":"A. J. Das, Navajit Saikia","doi":"10.1109/INCITE.2016.7857635","DOIUrl":null,"url":null,"abstract":"Pedestrian detection plays a vital role in numerous vision-based safety and security applications in recent days. Given an image, a pedestrian detector computes features from it and works on the features to classify if there is pedestrian. This paper presents a new feature set for pedestrian detection where a modified version of the local difference binary features are combined with the histogram of oriented gradients features. The linear support vector machine is used as the classifier. The performance of the proposed detector is presented in terms of miss-rate versus FPPI and miss-rate versus FPPW, and is compared with available pedestrian detectors of similar type. The computational efficiency of the detector is also studied.","PeriodicalId":59618,"journal":{"name":"下一代","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"下一代","FirstCategoryId":"1092","ListUrlMain":"https://doi.org/10.1109/INCITE.2016.7857635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Pedestrian detection plays a vital role in numerous vision-based safety and security applications in recent days. Given an image, a pedestrian detector computes features from it and works on the features to classify if there is pedestrian. This paper presents a new feature set for pedestrian detection where a modified version of the local difference binary features are combined with the histogram of oriented gradients features. The linear support vector machine is used as the classifier. The performance of the proposed detector is presented in terms of miss-rate versus FPPI and miss-rate versus FPPW, and is compared with available pedestrian detectors of similar type. The computational efficiency of the detector is also studied.
结合HOG的密集LDB描述符行人检测
近年来,行人检测在众多基于视觉的安全和安保应用中起着至关重要的作用。给定图像,行人检测器从图像中计算特征,并根据特征对是否存在行人进行分类。本文提出了一种新的行人检测特征集,该特征集将改进的局部差分二值特征与定向梯度特征的直方图相结合。采用线性支持向量机作为分类器。提出的检测器的性能是在缺失率相对于FPPI和缺失率相对于FPPW方面,并与现有的类似类型的行人检测器进行比较。研究了探测器的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
6212
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信