VTC circ: A Second-Order Theory for TCcirc

Phuong Nguyen, S. Cook
{"title":"VTC circ: A Second-Order Theory for TCcirc","authors":"Phuong Nguyen, S. Cook","doi":"10.1109/LICS.2004.1319632","DOIUrl":null,"url":null,"abstract":"We introduce a finitely axiomatizable second-order theory, which is VTC/sup 0/ associated with the class FO-uniform TC/sup 0/. It consists of the base theory V/sup 0/ for AC/sup 0/ reasoning together with the axiom NUMONES, which states the existence of a \"counting array\" Y for any string X: the ith row of Y contains only the number of 1 bits up to (excluding) bit i of X. We introduce the notion of \"strong /spl Delta//sub 1//sup B/-definability\" for relations in a theory, and use a recursive characterization of the TC/sup 0/ relations (rather than functions) to show that the TC/sup 0/ relations are strongly /spl Delta//sub 1//sup B/-definable. It follows that the TC/sup 0/ functions are /spl Sigma//sub 1//sup B/-definable in VTC/sup 0/. We prove a general witnessing theorem for second-order theories and conclude that the/spl Sigma//sub 1//sup B/ theorems of VTC/sup 0/ are witnessed by TC/sup 0/ functions. We prove that VTC/sup 0/ is RSUV isomorphic to the first order theory /spl Delta//sub 1//sup b/-CR of Johannsen and Pollett (the \"minimal theory for TC/sup 0/\"), /spl Delta//sub 1//sup b/-CR includes the /spl Delta//sub 1//sup b/ comprehension rule, and J and P ask whether there is an upper bound to the nesting depth required for this rule. We answer \"yes\", because VTC/sup 0/ , and therefore /spl Delta//sub 1//sup b/-CR, are finitely axiomatizable. Finally, we show that /spl Sigma//sub 1//sup B/ theorems of VTC/sup 0/ translate to families of tautologies which have polynomial-size constant-depth TC/sup 0/-Frege proofs. We also show that PHP is a /spl Sigma//sub 0//sup B/ theorem of VTC/sup 0/. These together imply that the family of propositional tautologies associated with PHP has polynomial-size constant-depth TC/sup 0/-Frege proofs.","PeriodicalId":6322,"journal":{"name":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","volume":"4 1","pages":"378-387"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2004.1319632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a finitely axiomatizable second-order theory, which is VTC/sup 0/ associated with the class FO-uniform TC/sup 0/. It consists of the base theory V/sup 0/ for AC/sup 0/ reasoning together with the axiom NUMONES, which states the existence of a "counting array" Y for any string X: the ith row of Y contains only the number of 1 bits up to (excluding) bit i of X. We introduce the notion of "strong /spl Delta//sub 1//sup B/-definability" for relations in a theory, and use a recursive characterization of the TC/sup 0/ relations (rather than functions) to show that the TC/sup 0/ relations are strongly /spl Delta//sub 1//sup B/-definable. It follows that the TC/sup 0/ functions are /spl Sigma//sub 1//sup B/-definable in VTC/sup 0/. We prove a general witnessing theorem for second-order theories and conclude that the/spl Sigma//sub 1//sup B/ theorems of VTC/sup 0/ are witnessed by TC/sup 0/ functions. We prove that VTC/sup 0/ is RSUV isomorphic to the first order theory /spl Delta//sub 1//sup b/-CR of Johannsen and Pollett (the "minimal theory for TC/sup 0/"), /spl Delta//sub 1//sup b/-CR includes the /spl Delta//sub 1//sup b/ comprehension rule, and J and P ask whether there is an upper bound to the nesting depth required for this rule. We answer "yes", because VTC/sup 0/ , and therefore /spl Delta//sub 1//sup b/-CR, are finitely axiomatizable. Finally, we show that /spl Sigma//sub 1//sup B/ theorems of VTC/sup 0/ translate to families of tautologies which have polynomial-size constant-depth TC/sup 0/-Frege proofs. We also show that PHP is a /spl Sigma//sub 0//sup B/ theorem of VTC/sup 0/. These together imply that the family of propositional tautologies associated with PHP has polynomial-size constant-depth TC/sup 0/-Frege proofs.
VTC circ: tcirc的二阶理论
我们引入了一个有限公化的二阶理论,该理论是VTC/sup 0/与类o -均匀TC/sup 0/相关联。它由基本理论V/sup 0/(用于AC/sup 0/推理)和公理NUMONES组成,该公理说明了对于任何字符串X存在一个“计数数组”Y:Y的第i行只包含到(不包括)x的第i位的1位的个数。我们为理论中的关系引入了“强/spl Delta//sub 1//sup B/-可定义性”的概念,并使用递归表征TC/sup 0/关系(而不是函数)来证明TC/sup 0/关系是强/spl Delta//sub 1//sup B/-可定义的。由此可见,TC/sup 0/函数在VTC/sup 0/中是/spl Sigma//sub 1//sup B/-可定义的。我们证明了二阶理论的一个一般证明定理,并得出VTC/sup 0/的/spl σ //sub 1//sup B/定理被TC/sup 0/函数证明。我们证明了VTC/sup 0/与Johannsen和Pollett的一阶理论/spl Delta//sub 1//sup b/-CR(“TC/sup 0/的最小理论”)是RSUV同态的,/spl Delta//sub 1//sup b/-CR包含了/spl Delta//sub 1//sup b/理解规则,J和P询问了该规则所需嵌套深度是否存在上界。我们回答“是”,因为VTC/sup 0/,因此/spl Delta//sub 1//sup b/-CR是有限公化的。最后,我们证明了/spl Sigma//sub 1//sup B/ / VTC/sup 0/的定理可转化为具有多项式大小等深度TC/sup 0/-Frege证明的重言式族。我们还证明了PHP是一个/spl Sigma// sub0 //sup B/ VTC/sup 0/的定理。这些共同意味着与PHP相关的命题重言式家族具有多项式大小的等深度TC/sup 0/-Frege证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信