Electroplated ZnO Thin Film: Influence of Deposition Time on Optical and Structural Properties

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES
N. Siregar, M. Motlan, M. Sirait
{"title":"Electroplated ZnO Thin Film: Influence of Deposition Time on Optical and Structural Properties","authors":"N. Siregar, M. Motlan, M. Sirait","doi":"10.21315/jps2023.34.1.4","DOIUrl":null,"url":null,"abstract":"Zinc oxide (ZnO) thin film, an important n-type semiconductor for various applications, needs to be prepared by a simple and low-cost method. Herein, ZnO thin films with various deposition times (1.25 min, 2.50 min, 5.00 min and 7.5 min) have been successfully fabricated by the electroplating method. The X-ray diffraction analysis demonstrates that the crystal structure of all samples was hexagonal, with the largest crystal size of 28.17 nm and a deposition time of 2.50 min. The scanning electron microscopy (SEM) analysis shows that the deposition time increased along with the more visible size distribution of the crystallite grains and the smaller, more spherical and uniform, compact coating of the substrate. It is found that increasing the deposition time from 1.25 min to 7.5 min leads to an increment of thickness from 0.84 µm to 4.4 µm. The elemental analysis reveals the presence of zinc (Zn) and oxygen (O) without impurities. The optical analysis reveals that the ZnO transmittance was greater than 95% for all deposition times. The highest bandgap energy value of the ZnO thin film is 3.24 eV at a deposition time of 1.25 min. With great optical and structural properties, our ZnO thin film has a big potential to be used for dye-sensitised solar cells (DSSC).","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21315/jps2023.34.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc oxide (ZnO) thin film, an important n-type semiconductor for various applications, needs to be prepared by a simple and low-cost method. Herein, ZnO thin films with various deposition times (1.25 min, 2.50 min, 5.00 min and 7.5 min) have been successfully fabricated by the electroplating method. The X-ray diffraction analysis demonstrates that the crystal structure of all samples was hexagonal, with the largest crystal size of 28.17 nm and a deposition time of 2.50 min. The scanning electron microscopy (SEM) analysis shows that the deposition time increased along with the more visible size distribution of the crystallite grains and the smaller, more spherical and uniform, compact coating of the substrate. It is found that increasing the deposition time from 1.25 min to 7.5 min leads to an increment of thickness from 0.84 µm to 4.4 µm. The elemental analysis reveals the presence of zinc (Zn) and oxygen (O) without impurities. The optical analysis reveals that the ZnO transmittance was greater than 95% for all deposition times. The highest bandgap energy value of the ZnO thin film is 3.24 eV at a deposition time of 1.25 min. With great optical and structural properties, our ZnO thin film has a big potential to be used for dye-sensitised solar cells (DSSC).
电镀ZnO薄膜:沉积时间对光学和结构性能的影响
氧化锌(ZnO)薄膜是一种重要的n型半导体,具有广泛的应用前景,需要采用简单、低成本的方法制备。本文成功制备了不同沉积时间(1.25 min, 2.50 min, 5.00 min和7.5 min)的ZnO薄膜。x射线衍射分析表明,所有样品的晶体结构均为六边形,最大晶粒尺寸为28.17 nm,沉积时间为2.50 min。扫描电镜(SEM)分析表明,沉积时间随晶体晶粒尺寸分布越明显而增加,基底涂层越小、越球形、均匀致密。结果表明,将沉积时间从1.25 min增加到7.5 min,厚度从0.84µm增加到4.4µm。元素分析表明,锌(Zn)和氧(O)的存在,没有杂质。光学分析表明,在所有沉积时间内,ZnO的透过率都大于95%。在1.25 min的沉积时间下,ZnO薄膜的能带值最高为3.24 eV,具有良好的光学性能和结构性能,在染料敏化太阳能电池(DSSC)中具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physical Science
Journal of Physical Science Physics and Astronomy-Physics and Astronomy (all)
CiteScore
1.70
自引率
0.00%
发文量
19
期刊介绍: The aim of the journal is to disseminate latest scientific ideas and findings in the field of physical sciences among scientists in Malaysia and international regions. This journal is devoted to the publication of articles dealing with research works in Chemistry, Physics and Engineering. Review articles will also be considered. Manuscripts must be of scientific value and will be submitted to independent referees for review. Contributions must be written in English and must not have been published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信