Data-driven predictive maintenance framework for railway systems

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jorge Meira, Bruno Veloso, V. Bolón-Canedo, G. Marreiros, Amparo Alonso-Betanzos, João Gama
{"title":"Data-driven predictive maintenance framework for railway systems","authors":"Jorge Meira, Bruno Veloso, V. Bolón-Canedo, G. Marreiros, Amparo Alonso-Betanzos, João Gama","doi":"10.3233/ida-226811","DOIUrl":null,"url":null,"abstract":"The emergence of the Industry 4.0 trend brings automation and data exchange to industrial manufacturing. Using computational systems and IoT devices allows businesses to collect and deal with vast volumes of sensorial and business process data. The growing and proliferation of big data and machine learning technologies enable strategic decisions based on the analyzed data. This study suggests a data-driven predictive maintenance framework for the air production unit (APU) system of a train of Metro do Porto. The proposed method assists in detecting failures and errors in machinery before they reach critical stages. We present an anomaly detection model following an unsupervised approach, combining the Half-Space-trees method with One Class K Nearest Neighbor, adapted to deal with data streams. We evaluate and compare our approach with the Half-Space-Trees method applied without the One Class K Nearest Neighbor combination. Our model produced few type-I errors, significantly increasing the value of precision when compared to the Half-Space-Trees model. Our proposal achieved high anomaly detection performance, predicting most of the catastrophic failures of the APU train system.","PeriodicalId":50355,"journal":{"name":"Intelligent Data Analysis","volume":"36 1","pages":"1087-1102"},"PeriodicalIF":0.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Data Analysis","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ida-226811","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of the Industry 4.0 trend brings automation and data exchange to industrial manufacturing. Using computational systems and IoT devices allows businesses to collect and deal with vast volumes of sensorial and business process data. The growing and proliferation of big data and machine learning technologies enable strategic decisions based on the analyzed data. This study suggests a data-driven predictive maintenance framework for the air production unit (APU) system of a train of Metro do Porto. The proposed method assists in detecting failures and errors in machinery before they reach critical stages. We present an anomaly detection model following an unsupervised approach, combining the Half-Space-trees method with One Class K Nearest Neighbor, adapted to deal with data streams. We evaluate and compare our approach with the Half-Space-Trees method applied without the One Class K Nearest Neighbor combination. Our model produced few type-I errors, significantly increasing the value of precision when compared to the Half-Space-Trees model. Our proposal achieved high anomaly detection performance, predicting most of the catastrophic failures of the APU train system.
铁路系统数据驱动的预测性维护框架
工业4.0趋势的出现为工业制造带来了自动化和数据交换。使用计算系统和物联网设备,企业可以收集和处理大量的感官和业务流程数据。大数据和机器学习技术的增长和扩散使得基于分析数据的战略决策成为可能。本研究提出了一个数据驱动的波尔图地铁列车空气产生装置(APU)系统的预测性维护框架。提出的方法有助于在机械到达关键阶段之前检测故障和错误。我们提出了一种基于无监督方法的异常检测模型,将半空间树方法与一类K近邻方法相结合,适用于处理数据流。我们评估并比较了我们的方法与半空间树方法应用没有一类K最近邻组合。与Half-Space-Trees模型相比,我们的模型产生了很少的i型错误,显著提高了精度值。我们的方案实现了较高的异常检测性能,预测了APU列车系统的大多数灾难性故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligent Data Analysis
Intelligent Data Analysis 工程技术-计算机:人工智能
CiteScore
2.20
自引率
5.90%
发文量
85
审稿时长
3.3 months
期刊介绍: Intelligent Data Analysis provides a forum for the examination of issues related to the research and applications of Artificial Intelligence techniques in data analysis across a variety of disciplines. These techniques include (but are not limited to): all areas of data visualization, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, database mining techniques, tools and applications, use of domain knowledge in data analysis, big data applications, evolutionary algorithms, machine learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filtering, and post-processing. In particular, papers are preferred that discuss development of new AI related data analysis architectures, methodologies, and techniques and their applications to various domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信