Neural network based predictive control with optimized search space for dynamic tracking of a piezo-actuated nano stage

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Khubab Ahmed, Peng Yan, Zhiming Zhang
{"title":"Neural network based predictive control with optimized search space for dynamic tracking of a piezo-actuated nano stage","authors":"Khubab Ahmed, Peng Yan, Zhiming Zhang","doi":"10.1177/1045389x231190819","DOIUrl":null,"url":null,"abstract":"This paper presents an intelligent modified predictive control approach with squeezed search space, for tracking control of piezo-actuated nano stage. The model obtained from the gray box neural network is first dynamically linearized to avoid calculation of inverse hysteresis model. The optimum control values of the previous control cycle are used to construct a squeezed search space, which reduces the computation burden and improves the tracking control performance. The effectiveness of the proposed scheme is verified theoretically by deriving a convergence analysis and by experimental results. The results show that the proposed approach significantly improves the dynamic tracking performance for high-frequency reference signals than existing results in the literature.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"1 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x231190819","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an intelligent modified predictive control approach with squeezed search space, for tracking control of piezo-actuated nano stage. The model obtained from the gray box neural network is first dynamically linearized to avoid calculation of inverse hysteresis model. The optimum control values of the previous control cycle are used to construct a squeezed search space, which reduces the computation burden and improves the tracking control performance. The effectiveness of the proposed scheme is verified theoretically by deriving a convergence analysis and by experimental results. The results show that the proposed approach significantly improves the dynamic tracking performance for high-frequency reference signals than existing results in the literature.
基于神经网络优化搜索空间的压电驱动纳米工作台动态跟踪预测控制
针对压电驱动纳米工作台的跟踪控制问题,提出了一种压缩搜索空间的智能修正预测控制方法。首先对灰盒神经网络得到的模型进行动态线性化处理,避免了逆滞回模型的计算。利用前一个控制周期的最优控制值构造压缩搜索空间,减少了计算量,提高了跟踪控制性能。通过收敛性分析和实验结果,从理论上验证了该方案的有效性。结果表明,与已有的文献结果相比,该方法显著提高了高频参考信号的动态跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信