Convergence To Approximate Solutions of Multivalued Operators

Z. H. Maibed
{"title":"Convergence To Approximate Solutions of Multivalued Operators","authors":"Z. H. Maibed","doi":"10.30526/36.2.3023","DOIUrl":null,"url":null,"abstract":"The goal of this study is to provide a new explicit iterative process method \n approach for solving maximal monotone(M.M )operators in Hilbert spaces utilizing a\n finite family of different types of  mappings as( nonexpansive mappings,resolvent\n mappings and projection mappings. The findings given in this research strengthen and\n extend key previous findings in the literature. Then, utilizing various structural\n conditions in Hilbert space and variational inequality problems, we examine the strong\n convergence to nearest point projection for these explicit iterative process methods\n Under the presence of two important conditions for convergence, namely closure and\n convexity. The findings reported in this research strengthen and extend key previous\n findings from the literature","PeriodicalId":13022,"journal":{"name":"Ibn AL- Haitham Journal For Pure and Applied Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibn AL- Haitham Journal For Pure and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30526/36.2.3023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this study is to provide a new explicit iterative process method  approach for solving maximal monotone(M.M )operators in Hilbert spaces utilizing a finite family of different types of  mappings as( nonexpansive mappings,resolvent mappings and projection mappings. The findings given in this research strengthen and extend key previous findings in the literature. Then, utilizing various structural conditions in Hilbert space and variational inequality problems, we examine the strong convergence to nearest point projection for these explicit iterative process methods Under the presence of two important conditions for convergence, namely closure and convexity. The findings reported in this research strengthen and extend key previous findings from the literature
多值算子近似解的收敛性
本研究的目的是提供一种新的求解极大单调的显式迭代过程方法。M)在Hilbert空间中的算子,利用有限族的不同类型的映射,如(非膨胀映射,解析映射和投影映射)。本研究的发现加强并扩展了先前文献中的主要发现。然后,利用Hilbert空间中的各种结构条件和变分不等式问题,在闭包性和凸性两个重要收敛条件存在的情况下,研究了这些显式迭代过程方法对最近点投影的强收敛性。本研究报告的发现加强并扩展了先前文献中的主要发现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
67
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信