Category-based search using metadatabase in image retrieval

Yimin Wu, A. Zhang
{"title":"Category-based search using metadatabase in image retrieval","authors":"Yimin Wu, A. Zhang","doi":"10.1109/ICME.2002.1035752","DOIUrl":null,"url":null,"abstract":"We present a self-adjustable metadatabase aimed at improving the performance of the relevance feedback module extensively used in content-based image retrieval systems. Our metadatabase provides a mechanism for accumulating the optimized relevance feedback records (which are called metadata records) obtained from previous queries. Each metadata record in the metadatabase includes optimal query, feature weights, and identifiers of relevant and/or irrelevant images, and can be effectively used to guide future queries. With the metadatabase, the relevance feedback module admits a noticeable improvement on its performance for category-based search, especially when the relevant images form multiple classes in the feature space. Experiments on a Corel image set (with 31,438 images) show that our method has at least a 15% improvement on average precision and recall over relevance-feedback-only approaches.","PeriodicalId":90694,"journal":{"name":"Proceedings. IEEE International Conference on Multimedia and Expo","volume":"20 1","pages":"197-200 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2002.1035752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present a self-adjustable metadatabase aimed at improving the performance of the relevance feedback module extensively used in content-based image retrieval systems. Our metadatabase provides a mechanism for accumulating the optimized relevance feedback records (which are called metadata records) obtained from previous queries. Each metadata record in the metadatabase includes optimal query, feature weights, and identifiers of relevant and/or irrelevant images, and can be effectively used to guide future queries. With the metadatabase, the relevance feedback module admits a noticeable improvement on its performance for category-based search, especially when the relevant images form multiple classes in the feature space. Experiments on a Corel image set (with 31,438 images) show that our method has at least a 15% improvement on average precision and recall over relevance-feedback-only approaches.
基于分类的元数据库图像检索
我们提出了一个自调整的元数据库,旨在提高广泛应用于基于内容的图像检索系统的相关反馈模块的性能。我们的元数据库提供了一种机制,用于积累从以前的查询中获得的优化的相关反馈记录(称为元数据记录)。元数据库中的每个元数据记录都包含最优查询、特征权重以及相关和/或不相关图像的标识符,并且可以有效地用于指导未来的查询。使用元数据库后,相关性反馈模块在基于类别的搜索方面的性能有了明显的提高,特别是当相关图像在特征空间中形成多个类时。在Corel图像集(31,438张图像)上的实验表明,我们的方法在平均精度和召回率上比仅使用相关反馈的方法至少提高了15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信