First Vertically Stacked, Compressively Strained, and Triangular Ge0.91Sn0.09pGAAFETs with High $\mathbf{I_{ON}}$ of $\mathbf{19.3}\mu \mathbf{A}\ \mathbf{at}\ \mathbf{V_{OV}}=\mathbf{V}_{\mathbf{DS}}=\mathbf{-0.5V},\ \mathbf{G}_{\mathbf{m}}$ of $\mathbf{50.2}\mu \mathbf{S}$ at $\mathbf{V_{DS}}=\mat
Yu-Shiang Huang, Hung-Yu Ye, Fang-Liang Lu, Yi-Chun Liu, Chien-Te Tu, Chung-yi Lin, Shih-Ya Lin, Sun-Rang Jan, C. W. Liu
{"title":"First Vertically Stacked, Compressively Strained, and Triangular Ge0.91Sn0.09pGAAFETs with High $\\mathbf{I_{ON}}$ of $\\mathbf{19.3}\\mu \\mathbf{A}\\ \\mathbf{at}\\ \\mathbf{V_{OV}}=\\mathbf{V}_{\\mathbf{DS}}=\\mathbf{-0.5V},\\ \\mathbf{G}_{\\mathbf{m}}$ of $\\mathbf{50.2}\\mu \\mathbf{S}$ at $\\mathbf{V_{DS}}=\\mat","authors":"Yu-Shiang Huang, Hung-Yu Ye, Fang-Liang Lu, Yi-Chun Liu, Chien-Te Tu, Chung-yi Lin, Shih-Ya Lin, Sun-Rang Jan, C. W. Liu","doi":"10.23919/VLSIT.2019.8776550","DOIUrl":null,"url":null,"abstract":"The natural etching stop on {111} facets yields the small dangling bond density and roughness, enabling low SS and high <tex>$\\text{I}_{\\text{ON}}$</tex> on {111} sidewalls of the GAA channels. In addition, the <tex>$\\sim 2\\%$</tex> uniaxial compressive strain and <tex>$[\\text{Sn}]=9\\%$</tex> in the channel can reduce the hole effective mass. As a result, 50% improvement of <tex>$\\text{I}_{\\text{ON}}= 120\\mu \\text{A}/\\mu\\text{m}$</tex> (perimeter), and 71% improvement of <tex>$\\text{G}_{\\text{m}}=312\\mu \\text{S}/\\mu\\text{m}$</tex> are achieved than our previous 3 stacked GeSn {001} nanosheets. Record high <tex>$\\text{I}_{\\text{ON}}$</tex> of <tex>$19.3\\mu \\text{A}$</tex> per stack at <tex>$\\text{V}_{\\text{OV}}=\\text{V}_{DS}=-0.5\\text{V}$</tex> and record <tex>$\\text{G}_{\\text{m}}$</tex> of <tex>$50.2\\mu\\text{S}$</tex> per stack at <tex>$\\text{V}_{\\text{DS}}=-0.5\\text{V}$</tex> among all GeSn FinFETs and GAAFETs are achieved. The <tex>$\\text{SS}_{\\text{lin}}$</tex> as low as S4mV/dec is also obtained, 22% reduction than our previous work.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"1 1","pages":"T180-T181"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The natural etching stop on {111} facets yields the small dangling bond density and roughness, enabling low SS and high $\text{I}_{\text{ON}}$ on {111} sidewalls of the GAA channels. In addition, the $\sim 2\%$ uniaxial compressive strain and $[\text{Sn}]=9\%$ in the channel can reduce the hole effective mass. As a result, 50% improvement of $\text{I}_{\text{ON}}= 120\mu \text{A}/\mu\text{m}$ (perimeter), and 71% improvement of $\text{G}_{\text{m}}=312\mu \text{S}/\mu\text{m}$ are achieved than our previous 3 stacked GeSn {001} nanosheets. Record high $\text{I}_{\text{ON}}$ of $19.3\mu \text{A}$ per stack at $\text{V}_{\text{OV}}=\text{V}_{DS}=-0.5\text{V}$ and record $\text{G}_{\text{m}}$ of $50.2\mu\text{S}$ per stack at $\text{V}_{\text{DS}}=-0.5\text{V}$ among all GeSn FinFETs and GAAFETs are achieved. The $\text{SS}_{\text{lin}}$ as low as S4mV/dec is also obtained, 22% reduction than our previous work.
111{个刻面上的自然蚀刻停止产生小的悬垂键密度和粗糙度,从而在GAA通道的}111个侧壁上实现低SS和高$\text{I}_{\text{ON}}$。此外,通道内的{}$\sim 2\%$单轴压缩应变和$[\text{Sn}]=9\%$可以降低孔洞的有效质量。结果是,50% improvement of $\text{I}_{\text{ON}}= 120\mu \text{A}/\mu\text{m}$ (perimeter), and 71% improvement of $\text{G}_{\text{m}}=312\mu \text{S}/\mu\text{m}$ are achieved than our previous 3 stacked GeSn {001} nanosheets. Record high $\text{I}_{\text{ON}}$ of $19.3\mu \text{A}$ per stack at $\text{V}_{\text{OV}}=\text{V}_{DS}=-0.5\text{V}$ and record $\text{G}_{\text{m}}$ of $50.2\mu\text{S}$ per stack at $\text{V}_{\text{DS}}=-0.5\text{V}$ among all GeSn FinFETs and GAAFETs are achieved. The $\text{SS}_{\text{lin}}$ as low as S4mV/dec is also obtained, 22% reduction than our previous work.