{"title":"Portfolio theory for squared returns correlated across time","authors":"E. Eberlein, D. Madan","doi":"10.2139/ssrn.2635632","DOIUrl":null,"url":null,"abstract":"Allowing for correlated squared returns across two consecutive periods, portfolio theory for two periods is developed. This correlation makes it necessary to work with non-Gaussian models. The two-period conic portfolio problem is formulated and implemented. This development leads to a mean ask price frontier, where the latter employs concave distortions. The modeling permits access to skewness via randomized drifts. Optimal portfolios maximize a conservative market value seen as a bid price for the portfolio. On the mean ask price frontier we observe a tradeoff between the deterministic and random drifts and the volatility costs of increasing the deterministic drift. From a historical perspective, we also implement a mean-variance analysis. The resulting mean-variance frontier is three-dimensional expressing the minimal variance as a function of the targeted levels for the deterministic and random drift.","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":"19 1","pages":"1-36"},"PeriodicalIF":1.0000,"publicationDate":"2016-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Uncertainty and Quantitative Risk","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2139/ssrn.2635632","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
Allowing for correlated squared returns across two consecutive periods, portfolio theory for two periods is developed. This correlation makes it necessary to work with non-Gaussian models. The two-period conic portfolio problem is formulated and implemented. This development leads to a mean ask price frontier, where the latter employs concave distortions. The modeling permits access to skewness via randomized drifts. Optimal portfolios maximize a conservative market value seen as a bid price for the portfolio. On the mean ask price frontier we observe a tradeoff between the deterministic and random drifts and the volatility costs of increasing the deterministic drift. From a historical perspective, we also implement a mean-variance analysis. The resulting mean-variance frontier is three-dimensional expressing the minimal variance as a function of the targeted levels for the deterministic and random drift.
期刊介绍:
Probability, Uncertainty and Quantitative Risk (PUQR) is a quarterly academic journal under the supervision of the Ministry of Education of the People's Republic of China and hosted by Shandong University, which is open to the public at home and abroad (ISSN 2095-9672; CN 37-1505/O1).
Probability, Uncertainty and Quantitative Risk (PUQR) mainly reports on the major developments in modern probability theory, covering stochastic analysis and statistics, stochastic processes, dynamical analysis and control theory, and their applications in the fields of finance, economics, biology, and computer science. The journal is currently indexed in ESCI, Scopus, Mathematical Reviews, zbMATH Open and other databases.