Non homogeneous Dirichlet problem for the KdVB equation on a segment

Isahi Sánchez Suárez, Gerardo Loreto Gómez, Marcela Morales Morfín
{"title":"Non homogeneous Dirichlet problem for the KdVB equation on a segment","authors":"Isahi Sánchez Suárez, Gerardo Loreto Gómez, Marcela Morales Morfín","doi":"10.7153/DEA-09-21","DOIUrl":null,"url":null,"abstract":"We study the Non homogeneous Dirichlet problem with large initial data for the KdVB equation on the interval x ∈ (0,1) ⎪⎪⎨ ⎪⎪⎩ ut +uxu−uxx +uxxx = 0, t > 0, x ∈ (0,1) u(x,0) = u0(x), x ∈ (0,1) u(0,t) = u(1,t) = 0, t > 0 ux(1,t) = h(t), t > 0. (1) We prove that if the initial data u0 ∈ L2 and boundary data h(t) ∈ H∞(0,∞) then there exist a unique solution u ∈ C([0,∞) ;L2)∪C((0,∞) ;H1) of the initial-boundary value problem (1). We also obtain the large time asymptotic of solution uniformly with respect to x ∈ (0,1) as t → ∞. Mathematics subject classification (2010): 35Q35.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"14 1","pages":"265-283"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-09-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study the Non homogeneous Dirichlet problem with large initial data for the KdVB equation on the interval x ∈ (0,1) ⎪⎪⎨ ⎪⎪⎩ ut +uxu−uxx +uxxx = 0, t > 0, x ∈ (0,1) u(x,0) = u0(x), x ∈ (0,1) u(0,t) = u(1,t) = 0, t > 0 ux(1,t) = h(t), t > 0. (1) We prove that if the initial data u0 ∈ L2 and boundary data h(t) ∈ H∞(0,∞) then there exist a unique solution u ∈ C([0,∞) ;L2)∪C((0,∞) ;H1) of the initial-boundary value problem (1). We also obtain the large time asymptotic of solution uniformly with respect to x ∈ (0,1) as t → ∞. Mathematics subject classification (2010): 35Q35.
段上KdVB方程的非齐次Dirichlet问题
研究了区间x∈(0,1)⎪⎪⎪⎪ ut +uxu−uxx +uxxx = 0,t > 0, x∈(0,1)u(x,0) = u0(x), x∈(0,1)u(0,t) = u(1,t) = 0,t > 0 ux(1,t) = h(t), t > 0的KdVB方程的大初始数据非齐次Dirichlet问题。(1)证明了初值数据u0∈L2,边界数据h(t)∈h∞(0,∞),则初值-边值问题(1)存在一个唯一解u∈C([0,∞);L2)∪C((0,∞);H1),并得到了解在t→∞时关于x∈(0,1)的一致大时渐近性。数学学科分类(2010):35Q35。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信