Dynamic Biometric Recognition of Handwritten Digits Using Symbolic Aggregate Approximation

D. Serfass
{"title":"Dynamic Biometric Recognition of Handwritten Digits Using Symbolic Aggregate Approximation","authors":"D. Serfass","doi":"10.1145/3077286.3077308","DOIUrl":null,"url":null,"abstract":"Symbolic aggregate approximation (SAX) is an ideal technique for dynamic biometric recognition of handwritten digits. The manipulation of time series in SAX readily lends itself to analysis of the spatial coordinate data acquired from a digit written on the touchscreen of a smartphone or tablet. SAX generates a sequence of alphabetic characters derived from a time series as a result of this analysis. Alphabetic sequences may be compared using the SAX minimum distance function. We propose a new algorithm for author authentication based on this process and the simple use of mean and standard deviation. We analyze the accuracy of our solution using JMotif, a Java time series data mining toolkit based on SAX, and a handwritten digit database of 1400 samples from 14 authors. Our experimental validation proves that our algorithm will authenticate the author of any handwritten digit almost 100% of the time. We conclude that our work has important implications in the design of handwritten Personal Identification Number systems.","PeriodicalId":91384,"journal":{"name":"Proceedings of the 2014 ACM Southeast Regional Conference","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM Southeast Regional Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077286.3077308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Symbolic aggregate approximation (SAX) is an ideal technique for dynamic biometric recognition of handwritten digits. The manipulation of time series in SAX readily lends itself to analysis of the spatial coordinate data acquired from a digit written on the touchscreen of a smartphone or tablet. SAX generates a sequence of alphabetic characters derived from a time series as a result of this analysis. Alphabetic sequences may be compared using the SAX minimum distance function. We propose a new algorithm for author authentication based on this process and the simple use of mean and standard deviation. We analyze the accuracy of our solution using JMotif, a Java time series data mining toolkit based on SAX, and a handwritten digit database of 1400 samples from 14 authors. Our experimental validation proves that our algorithm will authenticate the author of any handwritten digit almost 100% of the time. We conclude that our work has important implications in the design of handwritten Personal Identification Number systems.
基于符号聚合近似的手写体数字动态生物特征识别
符号聚合近似(SAX)是一种理想的手写数字动态生物特征识别技术。SAX中时间序列的操作很容易用于分析从智能手机或平板电脑触摸屏上写入的数字获取的空间坐标数据。SAX生成一个从时间序列派生的字母字符序列,作为此分析的结果。可以使用SAX最小距离函数比较字母序列。我们在此基础上提出了一种新的作者认证算法,并简单地使用了均值和标准差。我们使用JMotif(一个基于SAX的Java时间序列数据挖掘工具包)和一个包含14位作者的1400个样本的手写数字数据库来分析我们的解决方案的准确性。我们的实验验证证明,我们的算法几乎可以100%地验证任何手写数字的作者。我们得出结论,我们的工作对手写个人识别号码系统的设计具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信