An Artificial Arms Race: Could it Improve Mobile Malware Detectors?

Rapahel Bronfman-Nadas, A. N. Zincir-Heywood, John T. Jacobs
{"title":"An Artificial Arms Race: Could it Improve Mobile Malware Detectors?","authors":"Rapahel Bronfman-Nadas, A. N. Zincir-Heywood, John T. Jacobs","doi":"10.23919/TMA.2018.8506545","DOIUrl":null,"url":null,"abstract":"On the Internet today, mobile malware is one of the most common attack methods. These attacks are usually established via malicious mobile apps. To combat this threat, one technique used is the deployment of mobile malware detectors. As the mobile threats evolve, designing and developing mobile malware detectors remains a challenging task. In this paper, we aim to explore whether creating an artificial arms race between mobile malware and detectors could improve the ability of the detector to adapt to the evolving threats. To better model this interaction, we present a co-evolution of both sides of the arms race using genetic algorithms. The experimental evaluations on publicly available malicious and non-malicious mobile apps and their variants generated by the artificial arms race show that this approach improves the detectors understanding of the problem.","PeriodicalId":6607,"journal":{"name":"2018 Network Traffic Measurement and Analysis Conference (TMA)","volume":"14 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Network Traffic Measurement and Analysis Conference (TMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/TMA.2018.8506545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

On the Internet today, mobile malware is one of the most common attack methods. These attacks are usually established via malicious mobile apps. To combat this threat, one technique used is the deployment of mobile malware detectors. As the mobile threats evolve, designing and developing mobile malware detectors remains a challenging task. In this paper, we aim to explore whether creating an artificial arms race between mobile malware and detectors could improve the ability of the detector to adapt to the evolving threats. To better model this interaction, we present a co-evolution of both sides of the arms race using genetic algorithms. The experimental evaluations on publicly available malicious and non-malicious mobile apps and their variants generated by the artificial arms race show that this approach improves the detectors understanding of the problem.
一场人为的军备竞赛:它能改善移动恶意软件检测吗?
在当今的互联网上,移动恶意软件是最常见的攻击方法之一。这些攻击通常是通过恶意移动应用程序建立的。为了对抗这种威胁,使用的一种技术是部署移动恶意软件检测器。随着移动威胁的发展,设计和开发移动恶意软件检测器仍然是一项具有挑战性的任务。在本文中,我们旨在探讨在移动恶意软件和检测器之间建立一场人为的军备竞赛是否可以提高检测器适应不断变化的威胁的能力。为了更好地模拟这种相互作用,我们使用遗传算法提出了军备竞赛双方的共同进化。对公开可用的恶意和非恶意移动应用程序及其由人为军备竞赛产生的变体的实验评估表明,该方法提高了检测器对问题的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信