{"title":"Quegel: A General-Purpose System for Querying Big Graphs","authors":"Qizhen Zhang, D. Yan, James Cheng","doi":"10.1145/2882903.2899398","DOIUrl":null,"url":null,"abstract":"Inspired by Google's Pregel, many distributed graph processing systems have been developed recently to process big graphs. These systems expose a vertex-centric programming interface to users, where a programmer thinks like a vertex when designing parallel graph algorithms. However, existing systems are designed for tasks where most vertices in a graph participate in the computation, and they are not suitable for processing light-workload graph queries which only access a small portion of vertices. This is because their programming model can seriously under-utilize the resources in a cluster for processing graph queries. In this demonstration, we introduce a general-purpose system for querying big graphs, called Quegel, which treats queries as first-class citizens in the design of its computing model. Quegel adopts a novel superstep-sharing execution model to overcome the weaknesses of existing systems. We demonstrate it is user-friendly to write parallel graph-querying programs with Quegel's interface; and we also show that Quegel is able to achieve real-time response time in various applications, including the two applications that we plan to demonstrate: point-to-point shortest-path queries and XML keyword search.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2899398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Inspired by Google's Pregel, many distributed graph processing systems have been developed recently to process big graphs. These systems expose a vertex-centric programming interface to users, where a programmer thinks like a vertex when designing parallel graph algorithms. However, existing systems are designed for tasks where most vertices in a graph participate in the computation, and they are not suitable for processing light-workload graph queries which only access a small portion of vertices. This is because their programming model can seriously under-utilize the resources in a cluster for processing graph queries. In this demonstration, we introduce a general-purpose system for querying big graphs, called Quegel, which treats queries as first-class citizens in the design of its computing model. Quegel adopts a novel superstep-sharing execution model to overcome the weaknesses of existing systems. We demonstrate it is user-friendly to write parallel graph-querying programs with Quegel's interface; and we also show that Quegel is able to achieve real-time response time in various applications, including the two applications that we plan to demonstrate: point-to-point shortest-path queries and XML keyword search.