{"title":"Tackling the multilingual and heterogeneous documents with the pre-trained language identifiers","authors":"Mohamed Raouf Kanfoud, Abdelkrim Bouramoul","doi":"10.1080/1206212X.2023.2218236","DOIUrl":null,"url":null,"abstract":"The Web has become one of the most important data sources, and the content shared is most often multilingual, as users belong to different cultures and speak different languages. Multilingual content (document) is not suitable for many people who only need content in one language. Furthermore, dividing a multilingual document into monolingual documents helps researchers extract only the text of the desired language to use in different tasks such as training or model testing. Therefore, it is challenging to clean and divide the raw content manually. This paper presents an automatic approach to dividing a multilingual document and reassembling it into monolingual documents by examining three existing state-of-the-art tools for Language Identification (LI). We prepared different corpora with different heterogeneity characteristics for the evaluation and evaluated their code-switching pattern using three different code-switching metrics. The proposed approach reached 99% as the best accuracy result for the long segment (long text) and 90% for the mixed segment. In addition, a good correlation was found between the I-Index and accuracy with Pearson’s r = −0.998.","PeriodicalId":39673,"journal":{"name":"International Journal of Computers and Applications","volume":"24 2 1","pages":"391 - 402"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212X.2023.2218236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The Web has become one of the most important data sources, and the content shared is most often multilingual, as users belong to different cultures and speak different languages. Multilingual content (document) is not suitable for many people who only need content in one language. Furthermore, dividing a multilingual document into monolingual documents helps researchers extract only the text of the desired language to use in different tasks such as training or model testing. Therefore, it is challenging to clean and divide the raw content manually. This paper presents an automatic approach to dividing a multilingual document and reassembling it into monolingual documents by examining three existing state-of-the-art tools for Language Identification (LI). We prepared different corpora with different heterogeneity characteristics for the evaluation and evaluated their code-switching pattern using three different code-switching metrics. The proposed approach reached 99% as the best accuracy result for the long segment (long text) and 90% for the mixed segment. In addition, a good correlation was found between the I-Index and accuracy with Pearson’s r = −0.998.
期刊介绍:
The International Journal of Computers and Applications (IJCA) is a unique platform for publishing novel ideas, research outcomes and fundamental advances in all aspects of Computer Science, Computer Engineering, and Computer Applications. This is a peer-reviewed international journal with a vision to provide the academic and industrial community a platform for presenting original research ideas and applications. IJCA welcomes four special types of papers in addition to the regular research papers within its scope: (a) Papers for which all results could be easily reproducible. For such papers, the authors will be asked to upload "instructions for reproduction'''', possibly with the source codes or stable URLs (from where the codes could be downloaded). (b) Papers with negative results. For such papers, the experimental setting and negative results must be presented in detail. Also, why the negative results are important for the research community must be explained clearly. The rationale behind this kind of paper is that this would help researchers choose the correct approaches to solve problems and avoid the (already worked out) failed approaches. (c) Detailed report, case study and literature review articles about innovative software / hardware, new technology, high impact computer applications and future development with sufficient background and subject coverage. (d) Special issue papers focussing on a particular theme with significant importance or papers selected from a relevant conference with sufficient improvement and new material to differentiate from the papers published in a conference proceedings.