{"title":"Dynamic boundary conditions for membranes whose surface energy depends on the mean and Gaussian curvatures","authors":"S. Gavrilyuk, H. Gouin","doi":"10.2140/memocs.2019.7.131","DOIUrl":null,"url":null,"abstract":"Membranes are an important subject of study in physical chemistry and biology. They can be considered as material surfaces with a surface energy depending on the curvature tensor. Usually, mathematical models developed in the literature consider the dependence of surface energy only on mean curvature with an added linear term for Gauss curvature. Therefore, for closed surfaces the Gauss curvature term can be eliminated because of the Gauss-Bonnet theorem. In [18], the dependence on the mean and Gaussian curvatures was considered in statics. The authors derived the shape equation as well as two scalar boundary conditions on the contact line. In this paper-thanks to the principle of virtual working-the equations of motion and boundary conditions governing the fluid membranes subject to general dynamical bending are derived. We obtain the dynamic 'shape equa-tion' (equation for the membrane surface) and the dynamic conditions on the contact line generalizing the classical Young-Dupr{\\'e} condition.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/memocs.2019.7.131","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Membranes are an important subject of study in physical chemistry and biology. They can be considered as material surfaces with a surface energy depending on the curvature tensor. Usually, mathematical models developed in the literature consider the dependence of surface energy only on mean curvature with an added linear term for Gauss curvature. Therefore, for closed surfaces the Gauss curvature term can be eliminated because of the Gauss-Bonnet theorem. In [18], the dependence on the mean and Gaussian curvatures was considered in statics. The authors derived the shape equation as well as two scalar boundary conditions on the contact line. In this paper-thanks to the principle of virtual working-the equations of motion and boundary conditions governing the fluid membranes subject to general dynamical bending are derived. We obtain the dynamic 'shape equa-tion' (equation for the membrane surface) and the dynamic conditions on the contact line generalizing the classical Young-Dupr{\'e} condition.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.