Harmonic modes of a disordered zig-zag chain

J. W. Halley, M. Thorpe, A. Walker
{"title":"Harmonic modes of a disordered zig-zag chain","authors":"J. W. Halley,&nbsp;M. Thorpe,&nbsp;A. Walker","doi":"10.1002/polc.5070730109","DOIUrl":null,"url":null,"abstract":"<p>We describe the results of a simulation of a model of a random chain embedded as a self-avoiding walk on a diamond lattice. The dynamic model is the same as Kirkwood's. The equation of motion method we use permits such functions as <i>S</i>(k, ω), the dynamic structure factor, to be calculated as easily as the density of states. We present results on the density of states and <i>S</i>(k, ω) for chains of 1000 monomers. The results illustrate a mechanism of harmonic self-stabilization of a chain, which we also discuss in physical terms. We believe that simulations of this type can be useful to experimentalists in relating spectral features to morphology.</p>","PeriodicalId":16867,"journal":{"name":"Journal of Polymer Science: Polymer Symposia","volume":"73 1","pages":"55-66"},"PeriodicalIF":0.0000,"publicationDate":"1985-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/polc.5070730109","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science: Polymer Symposia","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/polc.5070730109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe the results of a simulation of a model of a random chain embedded as a self-avoiding walk on a diamond lattice. The dynamic model is the same as Kirkwood's. The equation of motion method we use permits such functions as S(k, ω), the dynamic structure factor, to be calculated as easily as the density of states. We present results on the density of states and S(k, ω) for chains of 1000 monomers. The results illustrate a mechanism of harmonic self-stabilization of a chain, which we also discuss in physical terms. We believe that simulations of this type can be useful to experimentalists in relating spectral features to morphology.

无序之字形链的谐模
我们描述了一个随机链嵌入在钻石晶格上的自回避行走模型的仿真结果。动态模型与柯克伍德的模型相同。我们使用的运动方程方法允许像S(k, ω)这样的函数,即动力结构因子,像计算状态密度一样容易。我们给出了1000个单体链的态密度和S(k, ω)的结果。结果说明了链的谐波自稳定机理,并从物理角度对其进行了讨论。我们相信,这种类型的模拟可以帮助实验者将光谱特征与形态学联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信