{"title":"Working with ARMs: Complexity Results on Atomic Representations of Herbrand Models","authors":"Georg Gottlob , Reinhard Pichler","doi":"10.1006/inco.2000.2915","DOIUrl":null,"url":null,"abstract":"<div><div>An atomic representation of a Herbrand model (ARM) is a finite set of (not necessarily ground) atoms over a given Herbrand universe. Each ARM represents a possibly infinite Herbrand interpretation. This concept has emerged independently in different branches of computer science as a natural and useful generalization of the concept of finite Herbrand interpretation. It was shown that several recursively decidable problems on finite Herbrand models (or interpretations) remain decidable on ARMs.</div><div>The following problems are essential when working with ARMs: Deciding the equivalence of two ARMs, deciding subsumption between ARMs, and evaluating clauses over ARMs. These problems were shown to be decidable, but their computational complexity has remained obscure so far. The previously published decision algorithms require exponential space. In this paper, we prove that all mentioned problems are coNP-complete.</div></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"165 2","pages":"Pages 183-207"},"PeriodicalIF":0.8000,"publicationDate":"2001-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540100929158","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
An atomic representation of a Herbrand model (ARM) is a finite set of (not necessarily ground) atoms over a given Herbrand universe. Each ARM represents a possibly infinite Herbrand interpretation. This concept has emerged independently in different branches of computer science as a natural and useful generalization of the concept of finite Herbrand interpretation. It was shown that several recursively decidable problems on finite Herbrand models (or interpretations) remain decidable on ARMs.
The following problems are essential when working with ARMs: Deciding the equivalence of two ARMs, deciding subsumption between ARMs, and evaluating clauses over ARMs. These problems were shown to be decidable, but their computational complexity has remained obscure so far. The previously published decision algorithms require exponential space. In this paper, we prove that all mentioned problems are coNP-complete.
期刊介绍:
Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as
-Biological computation and computational biology-
Computational complexity-
Computer theorem-proving-
Concurrency and distributed process theory-
Cryptographic theory-
Data base theory-
Decision problems in logic-
Design and analysis of algorithms-
Discrete optimization and mathematical programming-
Inductive inference and learning theory-
Logic & constraint programming-
Program verification & model checking-
Probabilistic & Quantum computation-
Semantics of programming languages-
Symbolic computation, lambda calculus, and rewriting systems-
Types and typechecking