A method of mask wearing state detection based on YOLOv5

Lin Du, Manyu Wang, Zongkai Yang, Ke Zhang, Yanhan Li, Zhihua Chen
{"title":"A method of mask wearing state detection based on YOLOv5","authors":"Lin Du, Manyu Wang, Zongkai Yang, Ke Zhang, Yanhan Li, Zhihua Chen","doi":"10.1109/BMSB58369.2023.10211610","DOIUrl":null,"url":null,"abstract":"The COVID-19 (Corona Virus Disease 2019) outbroke in 2019, and in order to stop the epidemic, wearing masks is a very critical part. The use of deep learning technology for mask wearing detection can improve the detection accuracy and reduce human and material resources. In this paper, the YOLOv5(You Only Look Once version 5) model is used for mask wearing detection. In the experimental validation phase, the performance of YOLOv5 is tested by using different methods, respectively. Finally, it is found that the detection performance is optimal with the training method of labelsmoothing, and the Mean Average Precision (mAP) can reach 0.9252.","PeriodicalId":13080,"journal":{"name":"IEEE international Symposium on Broadband Multimedia Systems and Broadcasting","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE international Symposium on Broadband Multimedia Systems and Broadcasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMSB58369.2023.10211610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 (Corona Virus Disease 2019) outbroke in 2019, and in order to stop the epidemic, wearing masks is a very critical part. The use of deep learning technology for mask wearing detection can improve the detection accuracy and reduce human and material resources. In this paper, the YOLOv5(You Only Look Once version 5) model is used for mask wearing detection. In the experimental validation phase, the performance of YOLOv5 is tested by using different methods, respectively. Finally, it is found that the detection performance is optimal with the training method of labelsmoothing, and the Mean Average Precision (mAP) can reach 0.9252.
基于YOLOv5的口罩佩戴状态检测方法
2019年爆发了COVID-19(2019冠状病毒病),为了阻止疫情的蔓延,戴口罩是非常关键的一环。利用深度学习技术进行口罩佩戴检测,可以提高检测精度,减少人力物力。本文使用YOLOv5(You Only Look Once version 5)模型进行口罩佩戴检测。在实验验证阶段,分别采用不同的方法对YOLOv5的性能进行了测试。最后,发现使用标签平滑训练方法的检测性能最优,Mean Average Precision (mAP)可以达到0.9252。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信