Construction of Partial Geometries and LDPC codes based on Reed-Solomon Codes

Juane Li, Keke Liu, Shu Lin, K. Abdel-Ghaffar
{"title":"Construction of Partial Geometries and LDPC codes based on Reed-Solomon Codes","authors":"Juane Li, Keke Liu, Shu Lin, K. Abdel-Ghaffar","doi":"10.1109/ISIT.2019.8849677","DOIUrl":null,"url":null,"abstract":"This paper presents a construction of a class of partial geometries based on RS codes of prime lengths and shows that LDPC codes constructed based on Reed-Solomon codes of prime lengths are finite geometry LDPC codes. Furthermore, a new method for design and construction of nonbinary quasi-cyclic LDPC codes based on the conventional parity-check matrices of Reed-Solomon codes is presented. Simulation results show that the constructed nonbinary LDPC codes perform well over the additive white Gaussian channel.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"1 1","pages":"61-65"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a construction of a class of partial geometries based on RS codes of prime lengths and shows that LDPC codes constructed based on Reed-Solomon codes of prime lengths are finite geometry LDPC codes. Furthermore, a new method for design and construction of nonbinary quasi-cyclic LDPC codes based on the conventional parity-check matrices of Reed-Solomon codes is presented. Simulation results show that the constructed nonbinary LDPC codes perform well over the additive white Gaussian channel.
基于Reed-Solomon码的部分几何和LDPC码的构造
本文给出了一类基于素数RS码的部分几何的构造,并证明了基于素数Reed-Solomon码构造的LDPC码是有限几何LDPC码。在此基础上,提出了一种基于Reed-Solomon码的常规奇偶校验矩阵设计和构造非二进制拟循环LDPC码的新方法。仿真结果表明,所构造的非二进制LDPC码在加性高斯白信道上具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信