Acyclic 2-dimensional complexes and Quillen’s conjecture

K. I. Piterman, Iván Sadofschi Costa, A. Viruel
{"title":"Acyclic 2-dimensional complexes and Quillen’s conjecture","authors":"K. I. Piterman, Iván Sadofschi Costa, A. Viruel","doi":"10.5565/publmat6512104","DOIUrl":null,"url":null,"abstract":"Let $G$ be a finite group and $\\mathcal{A}_p(G)$ be the poset of nontrivial elementary abelian $p$-subgroups of $G$. Quillen conjectured that $O_p(G)$ is nontrivial if $\\mathcal{A}_p(G)$ is contractible. We prove that $O_p(G)\\neq 1$ for any group $G$ admitting a $G$-invariant acyclic $p$-subgroup complex of dimension $2$. In particular, it follows that Quillen's conjecture holds for groups of $p$-rank $3$. We also apply this result to establish Quillen's conjecture for some particular groups not considered in the seminal work of Aschbacher--Smith.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/publmat6512104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Let $G$ be a finite group and $\mathcal{A}_p(G)$ be the poset of nontrivial elementary abelian $p$-subgroups of $G$. Quillen conjectured that $O_p(G)$ is nontrivial if $\mathcal{A}_p(G)$ is contractible. We prove that $O_p(G)\neq 1$ for any group $G$ admitting a $G$-invariant acyclic $p$-subgroup complex of dimension $2$. In particular, it follows that Quillen's conjecture holds for groups of $p$-rank $3$. We also apply this result to establish Quillen's conjecture for some particular groups not considered in the seminal work of Aschbacher--Smith.
无环二维配合物与Quillen猜想
设$G$是一个有限群,$\mathcal{a}_p(G)$是$G$的非平凡初等阿贝尔$p$-子群的偏序集。Quillen推测,如果$\mathcal{A}_p(G)$可收缩,则$O_p(G)$是非平凡的。证明了对于任意群$G$存在一个维数$2的$G$-不变无环$p$-子群复合体$O_p(G)\neq 1$。特别地,它得出Quillen的猜想对$p$-秩$3$的群成立。我们还将这一结果应用于建立Quillen的猜想,该猜想适用于一些在Aschbacher- Smith的开创性工作中没有考虑到的特定群体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信