pm-SCAN: an I/O Efficient Structural Clustering Algorithm for Large-scale Graphs

J. Seo, Myoung-Ho Kim
{"title":"pm-SCAN: an I/O Efficient Structural Clustering Algorithm for Large-scale Graphs","authors":"J. Seo, Myoung-Ho Kim","doi":"10.1145/3132847.3133121","DOIUrl":null,"url":null,"abstract":"Most existing algorithms for graph clustering, including SCAN, are not designed to cope with large volumes of data that cannot fit in main memory. When there is not enough memory, those algorithms will incur thrashing, i.e. result in huge I/O costs. We propose an I/O-efficient algorithm for structural clustering, pm-SCAN. The main idea of our scheme is to partition a large graph into several subgraphs that can fit into main memory. We first find clusters in each subgraph, and then merge them to produce final clustering of the input graph. Experimental results show that while other existing algorithms are not scalable to the graph size, our proposed method produces scalable performance for limited memory space.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3133121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Most existing algorithms for graph clustering, including SCAN, are not designed to cope with large volumes of data that cannot fit in main memory. When there is not enough memory, those algorithms will incur thrashing, i.e. result in huge I/O costs. We propose an I/O-efficient algorithm for structural clustering, pm-SCAN. The main idea of our scheme is to partition a large graph into several subgraphs that can fit into main memory. We first find clusters in each subgraph, and then merge them to produce final clustering of the input graph. Experimental results show that while other existing algorithms are not scalable to the graph size, our proposed method produces scalable performance for limited memory space.
pm-SCAN:大规模图形的I/O高效结构聚类算法
大多数现有的图聚类算法,包括SCAN,都不是设计来处理不能放在主存中的大量数据的。当没有足够的内存时,这些算法将导致抖动,即导致巨大的I/O成本。我们提出了一种I/ o高效的结构聚类算法pm-SCAN。我们方案的主要思想是将一个大的图划分为几个可以放入主存的子图。我们首先在每个子图中找到聚类,然后合并它们以产生输入图的最终聚类。实验结果表明,虽然其他现有算法不能扩展到图大小,但我们提出的方法在有限的内存空间下具有可扩展的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信