{"title":"Social Networks Fake Account and Fake News Identification with Reliable Deep Learning","authors":"N. Kanagavalli, S. Baghavathi Priya","doi":"10.32604/iasc.2022.022720","DOIUrl":null,"url":null,"abstract":"Recent developments of the World Wide Web (WWW) and social networking (Twitter, Instagram, etc.) paves way for data sharing which has never been observed in the human history before. A major security issue in this network is the creation of fake accounts. In addition, the automatic classification of the text article as true or fake is also a crucial process. The ineffectiveness of humans in distinguishing the true and false information exposes the fake news as a risk to credibility, democracy, logical truth, and journalism in government sectors. Besides, the automatic fake news or rumors from the social networking sites is a major research area in the field of social media analytics. With this motivation, this paper develops a new reliable deep learning (DL) based fake account and fake news detection (RDL-FAFND) model for the social networking sites. The goal of the RDL-FAFND model is to resolve the major problems involved in the social media platforms namely fake accounts, fake news/rumor identification. The presented RDL-FAFND model detects the fake account by the use of a parameter tuned deep stacked Auto encoder (DSAE) using the krill herd (KH) optimization algorithm for detecting the fake social networking accounts. Besides, the presented RDL-FAFND model involves an ensemble of the machine learning (ML) models with different linguistic features (EML-LF) for categorizing the text as true or fake. An extensive set of experiments have been carried out for highlighting the superior performance of the RDL-FAFND model. A detailed comparative results analysis has stated that the presented RDL-FAFND model is considerably better than the existing methods.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"124 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Automation and Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/iasc.2022.022720","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3
Abstract
Recent developments of the World Wide Web (WWW) and social networking (Twitter, Instagram, etc.) paves way for data sharing which has never been observed in the human history before. A major security issue in this network is the creation of fake accounts. In addition, the automatic classification of the text article as true or fake is also a crucial process. The ineffectiveness of humans in distinguishing the true and false information exposes the fake news as a risk to credibility, democracy, logical truth, and journalism in government sectors. Besides, the automatic fake news or rumors from the social networking sites is a major research area in the field of social media analytics. With this motivation, this paper develops a new reliable deep learning (DL) based fake account and fake news detection (RDL-FAFND) model for the social networking sites. The goal of the RDL-FAFND model is to resolve the major problems involved in the social media platforms namely fake accounts, fake news/rumor identification. The presented RDL-FAFND model detects the fake account by the use of a parameter tuned deep stacked Auto encoder (DSAE) using the krill herd (KH) optimization algorithm for detecting the fake social networking accounts. Besides, the presented RDL-FAFND model involves an ensemble of the machine learning (ML) models with different linguistic features (EML-LF) for categorizing the text as true or fake. An extensive set of experiments have been carried out for highlighting the superior performance of the RDL-FAFND model. A detailed comparative results analysis has stated that the presented RDL-FAFND model is considerably better than the existing methods.
期刊介绍:
An International Journal seeks to provide a common forum for the dissemination of accurate results about the world of intelligent automation, artificial intelligence, computer science, control, intelligent data science, modeling and systems engineering. It is intended that the articles published in the journal will encompass both the short and the long term effects of soft computing and other related fields such as robotics, control, computer, vision, speech recognition, pattern recognition, data mining, big data, data analytics, machine intelligence, cyber security and deep learning. It further hopes it will address the existing and emerging relationships between automation, systems engineering, system of systems engineering and soft computing. The journal will publish original and survey papers on artificial intelligence, intelligent automation and computer engineering with an emphasis on current and potential applications of soft computing. It will have a broad interest in all engineering disciplines, computer science, and related technological fields such as medicine, biology operations research, technology management, agriculture and information technology.