{"title":"A Feasible Schedule for Parallel Assembly Tasks in Flexible Manufacturing Systems","authors":"Pawel Majdzik","doi":"10.34768/amcs-2022-0005","DOIUrl":null,"url":null,"abstract":"Abstract The paper concerns the design of a framework for implementing fault-tolerant control of hybrid assembly systems that connect human operators and fully automated technical systems. The main difficulty in such systems is related to delays that result from objective factors influencing human operators’ work, e.g., fatigue, experience, etc. As the battery assembly system can be considered a firm real-time one, these delays are treated as faults. The presented approach guarantees real-time compensation of delays, and the fully automated part of the system is responsible for this compensation. The paper begins with a detailed description of a battery assembly system in which two cooperating parts can be distinguished: fully automatic and semi-automatic. The latter, nonderministic in nature, is the main focus of this paper. To describe and analyze the states of the battery assembly system, instead of the most commonly used simulation, the classic max-plus algebra with an extension allowing one to express non-deterministic human operators’ work is used. In order to synchronize tasks and schedule (according to the reference schedule) automated and human operators’ tasks, it is proposed to use a wireless IoT platform called KIS.ME. As a result, it allows a reference model of human performance to be defined using fuzzy logic. Having such a model, predictive delays tolerant planning is proposed. The final part of the paper presents the achieved results, which clearly indicate the potential benefits that can be obtained by combining the wireless KIS.ME architecture (allocated in the semi-automatic part of the system) with wired standard production networks.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"5 1","pages":"51 - 63"},"PeriodicalIF":1.6000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2022-0005","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract The paper concerns the design of a framework for implementing fault-tolerant control of hybrid assembly systems that connect human operators and fully automated technical systems. The main difficulty in such systems is related to delays that result from objective factors influencing human operators’ work, e.g., fatigue, experience, etc. As the battery assembly system can be considered a firm real-time one, these delays are treated as faults. The presented approach guarantees real-time compensation of delays, and the fully automated part of the system is responsible for this compensation. The paper begins with a detailed description of a battery assembly system in which two cooperating parts can be distinguished: fully automatic and semi-automatic. The latter, nonderministic in nature, is the main focus of this paper. To describe and analyze the states of the battery assembly system, instead of the most commonly used simulation, the classic max-plus algebra with an extension allowing one to express non-deterministic human operators’ work is used. In order to synchronize tasks and schedule (according to the reference schedule) automated and human operators’ tasks, it is proposed to use a wireless IoT platform called KIS.ME. As a result, it allows a reference model of human performance to be defined using fuzzy logic. Having such a model, predictive delays tolerant planning is proposed. The final part of the paper presents the achieved results, which clearly indicate the potential benefits that can be obtained by combining the wireless KIS.ME architecture (allocated in the semi-automatic part of the system) with wired standard production networks.
期刊介绍:
The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences.
The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas:
-modern control theory and practice-
artificial intelligence methods and their applications-
applied mathematics and mathematical optimisation techniques-
mathematical methods in engineering, computer science, and biology.