Differential biomarker signatures in unipolar and bipolar depression: A machine learning approach

B. Wollenhaupt-Aguiar, D. Librenza-Garcia, G. Bristot, Laura Przybylski, L. Stertz, Renan Kubiachi Burque, K. Ceresér, L. Spanemberg, M. Caldieraro, B. Frey, M. Fleck, M. Kauer-Sant'Anna, Ives Cavalcante Passos, F. Kapczinski
{"title":"Differential biomarker signatures in unipolar and bipolar depression: A machine learning approach","authors":"B. Wollenhaupt-Aguiar, D. Librenza-Garcia, G. Bristot, Laura Przybylski, L. Stertz, Renan Kubiachi Burque, K. Ceresér, L. Spanemberg, M. Caldieraro, B. Frey, M. Fleck, M. Kauer-Sant'Anna, Ives Cavalcante Passos, F. Kapczinski","doi":"10.1177/0004867419888027","DOIUrl":null,"url":null,"abstract":"Objective: This study used machine learning techniques combined with peripheral biomarker measurements to build signatures to help differentiating (1) patients with bipolar depression from patients with unipolar depression, and (2) patients with bipolar depression or unipolar depression from healthy controls. Methods: We assessed serum levels of interleukin-2, interleukin-4, interleukin-6, interleukin-10, tumor necrosis factor-α, interferon-γ, interleukin-17A, brain-derived neurotrophic factor, lipid peroxidation and oxidative protein damage in 54 outpatients with bipolar depression, 54 outpatients with unipolar depression and 54 healthy controls, matched by sex and age. Depressive symptoms were assessed using the Hamilton Depression Rating Scale. Variable selection was performed with recursive feature elimination with a linear support vector machine kernel, and the leave-one-out cross-validation method was used to test and validate our model. Results: Bipolar vs unipolar depression classification achieved an area under the receiver operating characteristics (ROC) curve (AUC) of 0.69, with 0.62 sensitivity and 0.66 specificity using three selected biomarkers (interleukin-4, thiobarbituric acid reactive substances and interleukin-10). For the comparison of bipolar depression vs healthy controls, the model retained five variables (interleukin-6, interleukin-4, thiobarbituric acid reactive substances, carbonyl and interleukin-17A), with an AUC of 0.70, 0.62 sensitivity and 0.7 specificity. Finally, unipolar depression vs healthy controls comparison retained seven variables (interleukin-6, Carbonyl, brain-derived neurotrophic factor, interleukin-10, interleukin-17A, interleukin-4 and tumor necrosis factor-α), with an AUC of 0.74, a sensitivity of 0.68 and 0.70 specificity. Conclusion: Our findings show the potential of machine learning models to aid in clinical practice, leading to more objective assessment. Future studies will examine the possibility of combining peripheral blood biomarker data with other biological data to develop more accurate signatures.","PeriodicalId":8576,"journal":{"name":"Australian & New Zealand Journal of Psychiatry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0004867419888027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Objective: This study used machine learning techniques combined with peripheral biomarker measurements to build signatures to help differentiating (1) patients with bipolar depression from patients with unipolar depression, and (2) patients with bipolar depression or unipolar depression from healthy controls. Methods: We assessed serum levels of interleukin-2, interleukin-4, interleukin-6, interleukin-10, tumor necrosis factor-α, interferon-γ, interleukin-17A, brain-derived neurotrophic factor, lipid peroxidation and oxidative protein damage in 54 outpatients with bipolar depression, 54 outpatients with unipolar depression and 54 healthy controls, matched by sex and age. Depressive symptoms were assessed using the Hamilton Depression Rating Scale. Variable selection was performed with recursive feature elimination with a linear support vector machine kernel, and the leave-one-out cross-validation method was used to test and validate our model. Results: Bipolar vs unipolar depression classification achieved an area under the receiver operating characteristics (ROC) curve (AUC) of 0.69, with 0.62 sensitivity and 0.66 specificity using three selected biomarkers (interleukin-4, thiobarbituric acid reactive substances and interleukin-10). For the comparison of bipolar depression vs healthy controls, the model retained five variables (interleukin-6, interleukin-4, thiobarbituric acid reactive substances, carbonyl and interleukin-17A), with an AUC of 0.70, 0.62 sensitivity and 0.7 specificity. Finally, unipolar depression vs healthy controls comparison retained seven variables (interleukin-6, Carbonyl, brain-derived neurotrophic factor, interleukin-10, interleukin-17A, interleukin-4 and tumor necrosis factor-α), with an AUC of 0.74, a sensitivity of 0.68 and 0.70 specificity. Conclusion: Our findings show the potential of machine learning models to aid in clinical practice, leading to more objective assessment. Future studies will examine the possibility of combining peripheral blood biomarker data with other biological data to develop more accurate signatures.
单极和双相抑郁症的差异生物标志物特征:一种机器学习方法
目的:本研究使用机器学习技术结合外周生物标志物测量来建立特征,以帮助区分(1)双相抑郁症患者与单极抑郁症患者,(2)双相抑郁症或单极抑郁症患者与健康对照者。方法:对54例双相抑郁症门诊患者、54例单极抑郁症门诊患者和54例健康对照者按性别和年龄进行血清白细胞介素-2、白细胞介素-4、白细胞介素-6、白细胞介素-10、肿瘤坏死因子-α、干扰素-γ、白细胞介素- 17a、脑源性神经营养因子、脂质过氧化和氧化蛋白损伤水平的评估。采用汉密尔顿抑郁评定量表评估抑郁症状。采用线性支持向量机核递归特征消去进行变量选择,并采用留一交叉验证方法对模型进行测试和验证。结果:采用三种选定的生物标志物(白介素-4、硫代巴比妥酸活性物质和白介素-10),双相与单极抑郁症分类的受试者工作特征曲线下面积(AUC)为0.69,灵敏度为0.62,特异性为0.66。对于双相抑郁症与健康对照的比较,该模型保留了五个变量(白介素-6、白介素-4、硫代巴比妥酸反应物质、羰基和白介素- 17a), AUC为0.70,灵敏度为0.62,特异性为0.7。最后,单极抑郁症与健康对照的比较保留了7个变量(白介素-6、羰基、脑源性神经营养因子、白介素-10、白介素- 17a、白介素-4和肿瘤坏死因子-α), AUC为0.74,敏感性为0.68,特异性为0.70。结论:我们的研究结果显示了机器学习模型在临床实践中的潜力,有助于更客观的评估。未来的研究将研究将外周血生物标志物数据与其他生物数据相结合的可能性,以开发更准确的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信