{"title":"Computing Invariant Densities of a Class of Piecewise Increasing Mappings","authors":"Zi Wang, Jiu Ding, N. Rhee","doi":"10.1142/s0218127423500578","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a piecewise increasing mapping satisfying some generalized convexity condition, so that it possesses an invariant density that is a decreasing function. We show that this invariant density can be computed by a family of Markov finite approximations that preserve the monotonicity of integrable functions. We also construct a quadratic spline Markov method and demonstrate its merits numerically.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423500578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let [Formula: see text] be a piecewise increasing mapping satisfying some generalized convexity condition, so that it possesses an invariant density that is a decreasing function. We show that this invariant density can be computed by a family of Markov finite approximations that preserve the monotonicity of integrable functions. We also construct a quadratic spline Markov method and demonstrate its merits numerically.